lp

f
!

m

] ”.
Unisys Defense Systems nm F"_E mw Integrated Syntax and Semantics

INTEGRATING SYNTAX, SEMANTICS, AND DISCOURSE
DARPA NATURAL LANGUAGE UNDERSTANDING PROGRAM

R&D STATUS REPORT
AD-A200 485 Unisys/Defense Systems

ARPA ORDER NUMBER: 5262
PROGRAM CODE NO. NR 048-602 dated 10 August 1984 (433)

CONTRACTOR: Unisys Defense Systems CONTRACT AMOUNT: $1,704,901
CONTRACT NO: N00014-85-C-0012
EFFECTIVE DATE OF CONTRACT: 4/29/85 EXPIRATION DATE OF CONTRACT: 4/28/89

PRINCIPAL INVESTIGATOR: Dr. Lynette Hirschman PHONE NO. (215) 648-7554

SHORT TITLE OF WORK: DARPA Natural Language Understanding Program

REPORTING PERIOD: - 5/1/58 - 8/1/88

The views and conclusions contained in this document are those of the authors and should not be interpreted as
necessarily representing the official policies, either expressed or implied, of the Defense Advanced Research Projects

Agency or the U.S. Government.

M LECTE L J:
Q) 0CT 131988 i |
D . ‘

, N il '

P

88 1012 0586

Quarterly Report No. 13 -1. September 23, 1958

Unisys Defense Systems Integrated Syntax and Semantics

1. Description of Progress

Progress has been severely hampered by the funding situation. Qur current funding authorization ran out at
the end of June. Since then we have been authorised by Unisys to proceed at risk to a very limited extent, which
supports little more than administrative tasks.

1.1. Grammar

~Revisions to the grammar have been made to expand coverage of various complex object types and to ensure
correct labeling of nodes for semantics in these objects.

1.2. Syntax/Semantics Interaction

We implemented a new version of syntax/semantics interaction thai uses the existing semantic interpreter
and applies selection restrictions expressed in terms of constraints on thematic role assignments. Use of semantic
information associated with thematic roles increases generality and prevents potentially redundant (or conflicting)
information from being stored, once as a syntactically based pattern and again as constraints on fillers for the
thematic roles associated with a given predicate.

The new mechanism relies heavily on the original SPQR component, and uses the same context free grammar
to analyse the ISR. The main difference is that, where before SPQR would simply look the stripped down ISR pat-
tern up in a database, the new mechanism actually runs the semantic interpreter to see if the stripped down ISR is
semantically coherent. This has been tested thoroughly on the CASREPS domain, and selects the same parses that
SPQR did, in less time. There were a few SPQR patterns that reflected semantic information that could only be
previded by time analysis, such as the fact that
[pressure during engagement/ is a bad pattern. These are still basically preserved as patterns that are consulteld
after the semantic interpeter has run. Passing information back from the time analysis component is left as a
future research task. Given that qualification, we no longer need to collect a separate set of syntactically-based
patterns, although we are planning to preserve a record of ISRs that fail semantics. This will be useful as a source
of information about the parser pursuing wrong paths. In order to preserve the knowledge acquisition functionality
of SPQR, we are also working on a semantic rule editor which will be called interactively during the parse.

The selection DCG which is used to analyze the ISR has been made almost completely deterministic, yielding >
a more efficient and elegant module. In addition, another selection switch was implemented, allowing the user to
turn on and off the generalization feature of selection, which had previously always been on.

1.3. Semantics

The semaatic interpreter was extended to analyze adjectives as prenominal modifiers in the same manner
that it interprets prenominal past participles. Some limitations and problems in this extension were documented.

Several meetings were held to discuss the form of the Integrated Discourse Representation (IDR), semantic
representations and aspectual operators with the goal of establishing concrete criteria for designing semantic
representations for interpreting relations in the IDR. Several meetings were also held to compare the level of func-
tional representation in Lexical Functional Grammar to the ISR.

»

Routine modifications were made in processing messages from the CASREPS domain wkhich regularized the
output of previously working messages and added new messages.

MPACK, the version of KPACK supporting multiple inheritance was installed on the Suns. A Trident
knowledge base using MPACK has been implemented. A draft of a report on the MPACK knowledge base has been
prepared and js under revision.

]
1
Quarterly Report No. 13 -2- September 28, 1988 '7

w

Unisys Defense Systems Integrated Syntax and Semantics

1.4. Time

The temporal relations specifying the temporal structure of situations and the partial ordering among them
consist of binary Prolog terms. A graphic display of these relations was integrated into the X-window interface. It
consists of a header display field with a key explaining the graphic symbols, and a set of windows, each displaying a
totally ordered subset. The graphical temporal display has been completed and installed in the stable system.

1.5. Discourse

Processing of the’prompt/response relationship has been implemented. A prompt such as Cause of fatluref
creates a context for the proper interpretation of a fragmentary response like Deterioration due to age and wear, as
being the cause of failure requested in the prompt. We have generalised our treatment of reference to situations so
that PUNDIT can recognise references such as Miller engaged Barsuk. Attack successful, where the engagement and
the attack are the same situation. .

1.6. Evaluation of NL aystems

At the Darpa Workshop in Mohonk, Martha Palmer organised a panel discussion on the topic of evaluation of
natural language processing systems. Several issues were discussed, including the use of training sets and test sets
and how they could be established, and the organisation of the next MUCK conference. The week following
Mohonk, several of the panel participants, including Martha Palmer, were invited to a meeting at the University of
Pennsylvania organized by Mitch Marcus to discuss a possible DARPA proposal that Penn is considering. Penn
proposed that several hundred thousand words of data, both written language and spoken language, be collected
together and annotated with appropriate syntactic labels to be used as a training set. Part of this data would be
kept aside to be used as a hidden test set. Each year more data would be collected to be the test set, and the pre-
vious year’s test set would be released. Following this meeting, Martha Palmer organized a meeting during the
ACL conference where members of the ACL executive committee discussed the issue of evaluation with several
DARPA contractors. It was agreed that Penn should hold another meeting to disuss the training sei proposal
again, and that Martha Palmer should organize a workshop on Evaluation of Natural Language "rocessing Sys-
tems. This workshop is being organized, will be held in December, and is being sponsored jointly by RADC and
ACL.

1.7. Documentation
“Three pieces of documentation were prepared describing how to use the PUNDIT system:

(1) PUNDIT User’s Guide (C. Ball, J. Dowding, F. Lang, C. Weir): a guide to running the PUNDIT system, for
the computational linguist familiar with Prolog. Includes appendices documenting PUNDIT files, dependen-
cies, image-building procedures, and references.

(2) A Guide to the PUNDIT Lexical Entry Procedure (L. Riley): documents the procedure for adding new words
to the PUNDIT lexicon.

(3) Guide to Object Options in PUNDIT (M. Linebarger): designed to accompany the Guide to the PUNDIT Lexi-
cal Entry Procedure. Documents the options available for specifying the allowable objects of verbs in the

PUNDIT lexicon.

These documents are included as appendices to this report. ' 7

2. Change in ¥ ;- Terannnel

Leslie Riley resigned effective 6/30 to pursue her education.

Quarterly Report No. 13 -3- September 28, 1988

@

m

k Unisys Defense Systems Integrated Syntax and Semantics
h 2. Summary of Substantive Information from Meetings and Conferences
3.1. Darpa Meetings

Shirley Steele, Martha Palmer, and Lynette Hirschman attended the meeting of the Darpa Natural Language
contractors at Mohonk, New York, May 4-8.

Lynette Hirschman attended the meeting of Darpa Speech Contractors at Carnegie Mellon University /Hidden
Valley June 15-17.

3.2. Papers and Presentations

(1) Hirschman, L. "A Meta-Treatment of wh-Constructions”. Presented at the META 88 Workshop on Meta Pro-
gramming in Logic Programming.

(2) Hirschman, L., Hopkins, W.C., Smith, R.C. "Or-Parallel Speed-up in Natural Language Processing: A Case
Study”. To be presented at the 5th International Logic Programming Conference, Seattle, August, 1988.

(3) Linebarger, Marcia, Dahl, Deborah, Hirschman, Lynette, and Passoneau, Rebecca, "Sentence Fragments Regu-

lar Structures”. Presented at the 26th Annual Meeting of the Association for Computational Linguistics”,
June 6-10, 1988,

(4) Martha Palmer, Lynette Hirschman, and Deborah Dahl, "Text Processing Systems”. Tutorial presented at the
26th Annual Meeting of the Association for Computational Linguistics, June 6-10, 1988.

3.3. Conference Attendance

Deborah Dahl, John Dowding, Lynette Hirschman, Martha Palmer, Rebecca Passonneau, and Carl Wier
attended the 26th Annual Meeting of the Association for Computational Linguistics at Buffalo, New York, June 8-
10. Pundit was demonstrated at this conference.

Lynette Hirschman attended the Meta88 conference on meta-programming in logic programming, Bristol, »
England, in June.

Lynette Hirschman attended the 5th International Logic Programming Conference, Seattle, August, 1988,

4. Problems Expected or Anticipated

Authorized funding ran out in June. We have been informed that an additional $86K has been signed off out
of Darpa, and that the $412K increment is being processed as well, but that these will probably not be released
from ONR until October. We cannot resume work until this funding is received. In addition, it is critical that we
receive our I v 89 funding as soon as possible; otherwise it will be necessary to interrupt work again, pending
receipt of that funding.

»
6. Action Required by the Government
Expedite $86,000 FY88 funding increment. Expedite FY89 funding.
6. Fiscal Status I1
(1) Amount currently provided on contract:
$ 1,192,833 (funded) $1,704,901 (contract value)
Quarterly Report No. 13 -4 September 28, 1988 !1

M

h

Unisys Defense Systems Integrated Syntax and Semantics

(2) Expenditures and commitments to date:
$ 1,217,835

(3) Funds required to complete work:
$ 487,066

Quarterly Report No. 13 -5- September 28, 1988 %

. S

PUNDIT

User’s Guide*

A Version 1.0
July 6, 1988

Unisys Logic-Based Systems
Paoli Research Center
P.O. Box 517, Paoli, PA 19301

*This work has been supported by DARPA contract N00014-85-C-0012, administered by the Office of
Naval Research.

e
s’

!

!

"

. Contents
1 Introduction 1
r 1.1 The User’s Guide it e 1
L 1.2 TheSoftware e 1
2 Running PUNDIT 2
2.1 Core Images and DomainImages, 2
22 The MUCK Domain i it 2
23 parseandpundit e e 2
24 BeforeYouBegin 3
2.5 ProcessingaSentence, 3
3 Interpreting PUNDIT Output 5
31 TheParseTree i i i 5
3.2 ThelISR e 5
33 TheIDR e 9
4 Commonly Used Procedures 12
4.1 editrule e 12
4.2 editoword L. L e 12
43 PAISE L e 12
44 pundit e e e e e e e 13
4.5 punt . .. e e e e e e e e e e e e e e e e 15
4.6 rdbremove e e e 15
4.7 readln e e 16
4.8 SQUETYt e e e e e e e e e e e e e e e e e i6
® 4.9 ssucceed . . L L. L e e e e e e e i6
4.10 switches L e 17
4.10.1 entermew_word L e e e 18
4.10.2 DPLrace L e e e e e e e e e 18
4.10.3 parse_tree L Lo e e e e e e e e 18

4.10.4 conjunction

4.10.5 semantics L. o e e e
4.10.6 translated.grammar.present
4.10.7 translated grammardin.use.
4.10.8 grindero e e
4109 textamode L e e e
4.10.10decompositiontraceo
4.10.11SUMMATY « - « ¢ o v v e e e et e e e e e e e e e e e e e e e
4.10.12showdsr e e e e e e e
4.10.13selection L L e
4.10.14enable.db_accesso o
4.10.15count oL e e e e e e e e e e e e
4.10.16alltime e e
4.10.17tHMetTace e e e e e e e e e e e e e e

4.10.18window.display e e e e e e

Installing the System

Building PUNDIT Images

B.1 Building a Core PUNDIT Image
B.2 Creating a Functional Core PUNDIT Image
B.3 Creating a Complete Domain-Specific Image

Customizing Your PUNDIT User Environment

PUNDIT Files and Dependencies

D.1 Files o e e e e e e
D.2 Dependencies e e

PUNDIT Bibliography

E.1 Background Reading o0
E.2 Papers and Presentations

E.3 Technical Documentation

ii

.............................

23

23
23
24
24

26

27
27
30

List of Figures

w

© W =N O e

Running PUNDIT e 4
A glossary of string-grammar terms0 et 0w 6

Parse tree for Visual sighting of periscope followed by attack with asroc and

1SR for Visual sighting of periscope followed by attack with asroc and torpedos. 8
IDR for Visual sighting of periscope followed by attack with asroc and torpedos. 11

Using the pundit procedure, 14
Using the rdbremove utility 15
Using the switches utility 17
Setting the grinderswitch 20
Sample prolog.inifile 26

il

R Y———

1 INTRODUCTION 1

1 Introduction

1.1 The User’s Guide

The PUNDIT User’s Guide is intended to provide a concise and general introduction to the
facilities of the PUNDIT text-processing system. The intended audience is computational
linguists familiar with Quintus Prolog. While this document is not a reference manual,
and does not in itself contain sufficient information for you to either extend the system or
port it to a new domain, we have tried to cover the operational basics: how to run PUNDIT
(Section 2) and how to interpret PUNDIT's output (Section 3). In addition, Section 4
documents the two main procedures for accessing the system (parse and pundit), as well
as a number of other procedures which we make frequent use of as developers. Appendix
A and Appendix B will help you set the system up. Appendix D identifies the core and
domain files, and Appendix E lists papers, presentations, and technical documentation
available for PUNDIT.

1.2 The Software

The User’s Guide is designed to accompany a subset of the text-understanding software
which has been developed at the Paoli Research Center, as it exists on the date of puh
lication: the core components of PUNDIT, together with the domain-specific components
developed to process Navy tactical messages (RAINFORMs). This domain will be referred
to henceforth as the MUCK domain (an acronym for the message understanding confer-
ence which occasioned the development of the software). The MUCK software is essentially
similar to that developed for other domains, and may be considered representative: it
includes a domain-specific message input screen, lexicon, knowledge base, semantics rules
and database definitions, and it supports both analysis of text and limited natural lan-
guage queries. It differs from other domain softwa.e chiefly in having a comparatively rich
knowledge base.

Nl

2 RUNNING PUNDIT 2

2 Running PUNDIT

2.1 Core Images and Domain Images

Before you can use PUNDIT, the software must be installed at your site and the images
built. Appendix A contains instructions for creating a PUNDIT core image and a MUCK
domain image.

The core image is not functional, and is generally used only to build the domain imagss.’
In the discussion that follows, it will be assumed that you have a MUCK domain image
available to you.

2.2 The MUCK Domain

The MUCK domain has been designed to process the Remarks field of Navy tactical mes-
sages. Since the formatted fields in these messages contain information which establishes
the initial context for interpreting the text (message originator, date/ti—e, etc.), we have
developed a special front-end to collect this information. This message front-end is ac-
cessed by issuing the command pundit. See Section 4 for more information about this
command.

In order to make use of the MUCK domain image for syntactic and semantic analysis of
natural language input, you will need to know something about the sublanguage and the
knowledge base for this domain. In the file muck_working.pl you will find a subset of
the message:- from our message corpus which PUNDIT is currently able to process. By
examining other domain-specific files such as the lexicon, the knowledge base, and the
semantics rules, you should be in a position to construct your own input (see Appendix
D for a list of these files).

2.3 parse and pundit

The pundit command (discussed above) invokes the domain-specific message processing
front-end to the system, which collects both message header information and the message
body. An alternative, domain-independent method of accessing the system is provided by
parse, which prompts only for the text to be processed. Many of the researchers working
on PUNDIT currently interact with the system using parse, although certain higher-level
processes—reference resolution in particular—do not perform as well as they otherwise
could, since the initial discourse context is empty. The parse command, however, provides
more options for developers, and is the only command to use when no semantic processing
is desired (the front-end invoked by pundit assumes that a complete analysis is required).
These two commands are discussed in more detail in Section 4.

'The core image contains only the core procedures of PUNDIT, including the core lexicon (see Appendix
D). See Appendix B for details on how to create a functional image from the core image.

——

2 RUNNING PUNDIT 3

2.4 Before You Begin

Since we will be using a text from the Muck domain to illustrate PUNDIT’s operation, at
this point you may wish to load the MUCK image. Before using parse or pundit, however,
you will first need to set a few of the software switches which enable or disable various
system features. Do this by executing the switches procedure (described in more detail
in Section 4). The switches procedure will display the current switch settings in the
image, and will prompt you for a list of switches to be changed. Make sure, at least for
now, that you have the following switches turned on, and that all the others are turned

off:
1. parse_tre:
2. conjunction
3. semantics

4. translated_grammar._present

n

. translated _grammar_in_use

6. selection

At this stage you may also want to tell the Selection module not to query you about new
co-occurrence patterns. Call the procedure ssucceed (see Section 4 for more details).

2.5 Processing a Sentence

Having brought up the MuCk domain image and set your switches, you are are now ready
to analyze a sentence. Call parse, and you should see the prompt “sentence:”. Since
the following section describes the output generated from processing the sentence visual
sighting of periscope followed by attack with asroc and torpedos., you might want to type it
in now, including the final period. After typing the sentence in, you will need to signal the
end of input by entering two carriage-returns. The following is a transcript of someone
doing what you have just been asked to do in the last two subsections?.

ZNote that if you later create a prolog.ini file, as described in Appendix C, your initiai switch settings
may differ from those shown in the figure.

2 RUNNING PUNDIT 4

%/nlp/nlp/pundit/muck/Muck.qimage

Quintus Prolog Release 2.2 (Sun-3, Unix 3.2)

Copyright (C) 1987, Quintus Computer Systems, Inc. All rights reserved.
1310 Villa Street, Mountain View, Califormia (415) 965-7700

| ?- switches.

1. enter_new_word--------=--~--c-n-- > OFF
2. np_trace---=-----c--c-ccmacccaa- > OFF
3. parse_treg-~-~-----w--cccc-ce~-- > OFF
4. conjunction~-------eemecmecceecm e > ON
5. semantics--~---rmceccncccaccanaa > OFF
6. translated_grammar_present------- R ittt > ON
7. translated_grammar_in_use------- > OFF
8. grinder----~----~----mccwocreea- > OFF
9. text_mod@-------=~--ceoceccoccea- > OFF
10. decomposition_trace--------=--- > OFF
11. summary----------------ecccce-- > OFF
12. show_isr----------ccoccnvcaccea- > OFF
13. selection-~-=---=-c-cmccmcrcc e > ON
14. enable_db_access-=--=~----=----= > OFF
15. count-~---~--ec-c-ccscccanacoa- > QFF
16. all_tim@-------~c-comocr—coccwa- > OFF
17. time_trace-----~----=--=cn-=e-- > OFF
18. window_display-~----==-=--=-w-- > QFF

Please choose a list of switches, or type "ok." -~ [3,5,7].

Changed the switch: parse_tree-------=----~-cc-oo—eocc—vocoou- > ON
Changed the switch: semantics~-----=-v--cceccmccmcncncccnuno- > ON
Changed the switch: translated_grammar_in_use-----------=--=-- > ON
yes
| ?- ssucceed.
Setting selection switch unknown_selection to ~--=--=-=------ > succeed
yes °
| 7- parse. b
sentence: visual sighting of periscope followed by attack with asroc
and torpedos.
.1
Figure 1: Running PUNDIT
{
.

3 INTERPRETING PUNDIT OUTPUT 5

3 Interpreting PUNDIT Output

Syntactic processing in PUNDIT yields two syntactic descriptions of a sentence: a detailed
surface structure parse tree, and an operator-argument representation callec the Interme-
diate Syntactic Representation, or 1SR. The ISR regularizes the information in the parse
tree, reducing surface structure variants to a single canonical form and eliminating details
not required for semantic analysis.

PUNDIT’s semantic and pragmatic components take the ISR as input and produce a final
representation of the information conveyed by the sentence which includes a decomposition
of verbs into a structure of more basic predications, resolution of anaphoric references, and

an analysis of temporal relations. The resulting data structure is known as the Integrated
Discourse Representation, or 1DR.

These three kinds of output will be illustrated for the following sentence:
Visual sighting of periscope followed by attack with asroc and torpedos.

This particular sentence is characteristic of the sort of input PUNDIT has been designed to
handle. Note the ellipsis typical of message sublanguages®.

3.1 The Parse Tree

The syntactic analyses produced by PUNDIT are in the formalism of String Grammar
(Sager 81]. A brief glossary of String Grammar terms is provided below in figure (2) for
help in understanding the parse tree in figure (3). Parse trees are displayed with siblings
indented to the same depth; terminal elements (lexical items) are preceded by ==.

3.2 The ISR

The 1SR corresponding to the parse tree in figure (3) is shown in figure (4), which is
taken from the output of the parse procedure. Two versions of the ISR are given: the
first is essentially the data structure passed to semantic analysis, and the second is a
pretty-printed version.

The ISR requires little knowledge of string grammar to understand. Each clause consists
of syntactic operators (0PS—generally tense and aspect markers derived from the verb
morphology), the verb or predicate (VERB), and its arguments. Conjunction is indicated
by the insertion of the conjunction, followed by the conjuncts (set off by parallel lines).
Note that each noun phrase has an associated referential index; in this example, the ISR
has been printed after semantic and pragmatic analysis, and the indices have been bound
to discourse entities ([sightt], [periscopel], etc.).

3Translation: The visual sighting of a periscope was followed by an attack (on the submarine) with
anti-submarine rockets and torpedos.

2 INTERPRETING PUNDIT OUTPUT 6
lrr &= a left-adjunct + z + right-adjunct construction, where z can be:
n 4 a common noun

a & an adjective

v & a verb

ven <& a past participle
tv & a tensed verb

ving < a present participle
q <> a quantity word
pro <> a pronoun

nstgo <==> noun string object

nstg <=> noun string

sa <=> sentence adjunct

pn 4&=> preposition + noun (prepositional phrase)
tpos <=> the/determiner (prenominal) position
qpos <= quantity (prenominal} position

apos 4&=> adjective (prenominal) position

npos <=> noun (prenominal) position

venpass 4<=> past participle + passive

passobj <= passive object

nullobj <= null object (for intransitive verb)

thats <=> that + sentence object

objbe <= object of be

vingo <= present participle + object

commaopt ¢<=> comma option

conj._wd <=> conjunction word

spword <=> special (conjunction) word

dstg <= adverb string, where d stands for adverb.

Figure 2: A glossary of string-grammar terms

3 INTERPRETING PUNDIT OUTPUT 7

sentence
center
fragment
serocopula
subject
nstg
lar
In
apos
adjadj
larl
avar
adj m= visual
nvar
ving == sighting
1.
pnpn
pu
p m= of
nstg
lnr
Ia
nvar
n = periscope
lvr
vvar
null’aux
object
be'aux
venpass
lvenr
ven m= followed
sa
pn
P =m by
nstg
iar
In
avar
n == attack
m
papn
pn
p == with
nstg
Inr
in
nvar
n =m= asroc
conj wd
spword == and
Inr
in
tpos == tagged focal
qpos == tagged local
apos == tagged local
npos == tagged local
nvar
n == torpedos
passobj
nullobj

#
[}

Figure 3: Parse tree for Visual sighting of periscope followed by attack with asroc and
torpedos.

3 INTERPRETING PUNDIT OUTPUT 8

INTERMEDIATE SYNTACTIC REPRESENTATION (ISR):

(untensed,follow,subj(passive),obj([tpos(0), [gerund,nvar([sight,singular,
[sight11]),pp([ot, [tpos([]), [nvar([periscope,singular, [periscope11])]11)],
adj(lvisuall)l),pp([by, [tpos([]), [nvar([attack,singular, [attack1]]),pp([with,
[and, [tpos([]), [nvar([anti~submarine~rocket,singular, [rocket1]])]], [tpos((]),
(nvar([torpedo,plural, [torpedos111)1111)111)]

OPS: untensed
VERB: follow
SUBJ: passive
OBJ: gerund: sight (sing) : ([sighti1]

L_MOGD: adj: visual

R_MOD: pp: of

periscope (sing) : [periscopel]
PP: by
attack (sing) : [attacki]
R_MOD: pp: with
and

anti“submarine“rocket (sing) : [rocketi]

torpedo (pl) : [torpedosil

Figure 4: 1sr for Visual sighting of periscope followed by attack with asroc and torpedos.

N

v

3 INTERPRETING PUNDIT OUTPUT 9

3.3 The IDR

The IDR for the example sentence is shown in figure (5); its major segments are labelled
Ids, Properties, Events and Processes, States, and Important Time Relationms.

The Ids segment lists all the id, is_group, and generic predications derived during the
analys.s of the example sentence. Generic relations are established primarily to support
subsequent reference through generic they or one-anaphora®. Id relations indicate the
semantic type of each non-group discourse entity, while the is_group relations specify the
semantic type, members, and cardinality of each group-level discourse entity. Thus for
example the id relation for the entity [sight1]%, derived from the nominalization visual
sighting of periscope, indicates that the entity is an event, while the is_group relation for
the entity [projectilesi] indicates that the entity is a group of projectiies, consisting
of an unknown number of rockets and torpedos.

Relations in the Properties segment of the IDR are heterogeneous: these are miscella-
neous relations derived in the course of processing noun phrases. Prenominal adjectives
typically give rise to such relations; processing of noun-noun compounds may generate
unspecified relationship predications if no relationship between the nouns can be de-
rived from domain knowledge. In the current example, the reportingPlatform relations
are generated by a procedure which creates a default entity if the identity of the mes-
sage originator is not known—if we had used the pundit procedure instead of parse, this
information would have been supplied by the message header.

The Events and Processes and States segments of the IDR contain predications over
discourse entities which denote situations®. Typically it is the processing of a clause or a
nominalization which gives rise to a situation entity, and if the situation is an event, then
an entity will be generated for the resulting state as well. The main predicate is the type
of situation (event, state, or process), and each predication has three arguments:

1. The discourse entity
2. The associated semantic representation

3. A moment or period of time for which the situation holds

For example, the first predication in the Events and Processes segment in figure (5)
was derived from processing the isR for the nominalization visual sighting of periscope.
This particular predication asserts that the referent introduced by the gerund sighting
denotes an event; the semantic representation was constructed based on the semantics
rules for the verb sight. All situations that are labelled events in PUNDIT can be more

4See [Dahl 84] for a description of the relationship between generics and one-anaphora.

3Labels for discourse entities are derived from the lexical head of the expression and are typically
enclosed in brackets. These labels are arbitrary; [entity2] would do equally well.

8See [Passonneau 87] for a more detailed discussion of the semantics of situations.

3 INTERPRETING PUNDIT HUTPUT 10

accurately described as transitions from one state into another, where the full temporal
structure of the event consists of an initial process interval, the moment of transition,
and the new situation that is entered into’. In the second argument of the predication,
the becomeP operator takes as its argument the semantic representation that gives rise to
the new situation that is entered into, [(sight2]. The third argument of the predication,
moment([sight1]), should be interpreted functionally as returning the moment at which
the transition into the state in question occurred. Information about this new state,
[sight2], is provided by a predication in the States field.

The final segment of the IDR lists the temporal relations which were analyzed as holding
amongst the situations. Note in particular that since the verb follow is defined as a
temporal operator, PUNDIT has correctly established the temporal relationship between
the sighting and the attack.

"Thete is no referent introduced for the initial process interval of transition events.

3 INTERPRETING PUNDIT OUTPUT 11

Ias:

generic(torpedo)

is_group([torpedosi] ,members(torpedo, [torpedosi]),numb(_21227))
generic(anti~submarine~rocket)

id(anti“submarine“rocket, [rocket1])
is_group((projectiles1i] ,members(projectile, [[rocketi], [torpedosi1]]),numb(_21279))
id(us_platform, (us_platformi])

id(process, [attacki])

generic(periscope)

id(periscope, [periscopeil])

id(us_platform, [us_platform3])

id(state, [sight2])

id(event, [sight1])

Properties:
reportingPlatform([us_platformi])
reportingPlatform([us_platform3])

Events and Processes:
event(
[sighti1]
becomeP(sightP(experiencer([us_platform3]),theme([periscopel]),instrument(visual)))
sighted_atP(theme([periscopell),location(_28507))
moment{ [sightil))

process(
[attacki1]
doP(attackP(actor([us_platformil),theme(_19607),instrument([projectiles1l)))
period((lattack1]))

States:
state(
[sight2]
sightP(experiencer({us_platform3]),theme([periscope1]l),instrument(visual))
sighted_atP(theme([periscope1]),location(_28507))
period([sight2]))

Important Time Relations:

the sight state ([sight2]) started with the sight event ([sight1]) 4
the sight event ([sight1]) preceded the arbitrary event time (moment([attacki]))

of the attack process ([attacki])

Figure 5: IDR for Visual sighting of periscope followed by attack with asroc and torpedos.

o oaw

T

4 COMMONLY USED PROCEDURES 12

4 Commonly Used Procedures

4.1 edit_rule

The procedure edit_rule/1 allows you to edit a set of grammar rules for a specified ran-
terminal, using the Prolog Structure Editor. For more details, please consult [Riley 86].

4.2 edit_word

The procedure edit_word/1 allows you to edit the lexical entry for a specified word, using
the Prolog Structure Editor. For more details, please consult [Riley 86).

4.3 parse

The procedures parse and pundit (see below) provide two slightly different {ront-ends to
the PUNDIT system. parse is the access method of preference for those whose primary
interest is parsing or minimizing keystrokes (no prompts are issued to collect message
header information). The parse procedure is a core component of PUNDIT, and is domain-
independent.

The behavior and output of parse are largely controlled by switch settings (see Section
4). Briefly, the parse procedure collects the input to be analyzed by PUNDIT, and then
calls syntactic analysis. Depending on your switch settings, it may then call semantic
analysis, the database extractor, and the summary module (if defined for the current
domain). Depending again on switch settings, you may be shown both intermediate
and final results: trace messages, the parse trees, the Isrs, the IDR, database relations
extracted, and a summarization of the input text®. In the course of processing your input,
PUNDIT may engage you in dialogue if certain switches are turned on: for example, the
Selection module may ask you about co-occurrence patterns; if the switch enter_new_word
is on, you will be prompted to enter lexical information for new words.

The initial prompt to collect the input depends on switch settings as well. If the switch
text.mode is on, you will be prompted to enter a paragraph of text: that is, one or more
sentences followed by two carriage returns®. In this case, the input will be processed one
sentence at a time, and the first parse for each sentence will be processed.

If the switch text.mode is off, you will be prompted to enter a single sentence; after
processing the first parse. you will be invited to continue with the next parse, until you
wish to stop or all parses have been exhausted.

8The summary application is not implemented in the MUCK domain.

9Since each sentence may optionally be followed by one carriage return, the extra carriage return at
the end is needed to signal the end of input. Moreover, although PUNDIT will process run-on sentences
(without punctuation), the final sentence must have a terminator: a period, exclamation point, or question
mark.

4

4 COMMONLY USED PROCEDURES 13

In addition to these capabilities, designed for the processing of sentences, you may also an-
alyze lower-level constituents. To process an isolated noun phrase, call parse np/0 (this
procedure supports both syntactic and semantic analysis). NPs and other constituents
may also be parsed by invoking parse/1, giving as argument the grammatical category
(this will require a knowledge of PUNDIT’s grammatical categories). As a simple illustra-
tion, you may parse the noun phrase visual sighting of periscope by calling parse(lnr).
Note, however, that parse(1lnr) does not support semantic analysis.

4.4 pundit

The pundit procedure provides a domain-specific front-end to the PUNDIT system, one
geared specifically towards full message processing. Since pundit is similar in many re-
spects to parse (see above), only differences will be described here.

First, pundit is not sensitive to the semantics and text_mode switches: it is assumed that
all messages require semantic analysis, and that all input will be one or more sentences
of text. As a result, it is not possible to request multiple parses of the input. However,
if a sentence fails semantic analysis, pundit will backtrack for the next parse, and this
process will continue until a semantically acceptable parse is found.

Secondly, pundit provides a domain-specific message entry screen which collects the mes-
sage header and the message body. The screen for the MUCK domain is shown in Figure
(6) below (you may enter a question mark at any prompt to receive a description of valid
responses). The responses to the first four prompts are used to establish the discourse
context for the interpretation of the message body.

The pundit procedure also provides capabilities for processing one or more existing mes-
sages from the message corpus (stored in <domain> working.pl). When you first invoke
pundit, the message corpus is compiled into your image, creating entries in the recorded
database!®, At the prompt for Message number, you may enter the number of an existing
message, and pundit will fetch the message from the recorded database and process it.
If you wish to process a list of existing messages, call pundit(batch,YourList), where
YourList is a Prolog list of message numbers. You may also process the entire message
corpus by calling pundit(batch,test.pundit)!l.

191f there is a version of the message corpus in your directory, pundit will load that; otherwise, it will
load the file from the main domain directory. This feature allows you to maintain a personal corpus of
texts.

YThis is the method which we use to test software changes: the output can be saved in a file and
compared against the results of testing a previous image.

|7 S U —— ——— e
I

|

»

4 COMMONLY USED PROCEDURES 14

%-nlp/pundit/muck/Muck.qimage +

Loading /usr/local/bin/em215 with /mn2/q2.2/ml...
Unix Prolog+Emacs V2.15 (01-Jan-88)
- Copyright(c) 1986, 1987 Unipress Software, Inc.

Quintus Prolog Release 2.2 (Sun-3, Unix 3.2)
Copyright (C) 1987, Quintus Computer Systems, Inc. All rights reserved.
hl 1310 Villa Street, Mountain View, California (415) 965-7700

(consulting /mn2/cball/prolog.ini...]
Setting selection switch unknown_selection to -=---=-=----~ > succeed
(prolog.ini consulted 0.133 sec 720 bytes]

| ?- pundit.

[compiling /nlp/nlp/pundit/muck/muck_working.pl...]
[muck_working.pl compiled 2.700 sec 12,612 bytes]

ek ok ook Aok ok ok ok ok dokokokokokokokokk RATNFORM MESSAGE ENTRY ok o5 sk ok ook s s o ok o ok o ok ok ok ok e

Message number (1] :11

Enemy platform [barsuk] :submarine
Reporting platform [virginia] :texas
Report time (o800t] :0800t

Sighting message: sighted periscope an asroc was fired proceeded to
station visual contact lost, constellation helo hovering in vicinity.
sub appeared to be ocoa.

Processing discourse segment...

Segment processing Time: 39.967 sec.

AR O KRRk Rk Complete IDR sokskkokdok dakkok ook dok Aok ok ok

(etc.)

e

Figure 6: Using the pundit procedure

-

- T T T T

4 COMMONLY USED PROCEDURES 15

4.5 punt

This procedure provides on-line documentation for several PUNDIT utilities: the Prolog
Structure Editor, the Lezical Entry Procedure, tools for creating a concordance, and the
Dictionary Merge utility. To invoke the punt utility, type punt at the Prolog prompt.

4.6 rdb_remove

This development utility removes entries of specified type(s) from the Prolog recorded
database. It is useful when testing changos to one of the files whose compilation creates
such entries. For example, the pundit procedure, as one of its steps, compiles the message
corpus into your current image. If you should wish to edit and reload the message file
(<domain>_working.pl), you must first remove the old messages: rdb_remove facilitates
this task. A sample session is given below.

| ?- rdb_remove.

Recorded Database Rules:

1. The Lexicon (dict)

2. The Bnf (bnf)

3. Define and Simplification Rules (define) [obsolete]
4. Semantic Selection Rules (semantics) [obsolete]
5. Clause Mapping Rules (mapping) [obsolete]
6. Noun Phrase Mapping Rules (mapping_np) [obsolete]
7. All Semantics Rules (all_semantics) [obsolete]
8. The Selectional Patterns (selection)

9. The Stable Messages (messages)

10. quit

Please choose a list of items -- [9].

Erasing corpus muck...

Time to erase the testing messages: 0.15 sec.

Figure 7: Using the rdb_remove utility

Note that options 3-7 are obsolete (semantics rules are not stored in the recorded database).

|

i

4 COMMONLY USED PROCEDURES ' 16

4.7 readlIn

The procedure readIn/1 loads a PUNDIT lexicon into the current image. Its argument
is the name of a lexicon file. For example, to load the lexicon file my_lex.pl from the
current working directory, execute the goal readIn(my_lex). Lexical entries are stored in
the recorded database; to avoid duplicate entries, it may be necessary to run rdb_remove
to remove previous entries before using readIn to load a new lexicon.

4.8 squery

The predicate squery/0 is used to control the behavior of the Selection component when
it encounters an unknown selectional pattern. Execute the goal squery to be queried
when an unknown pattern is encountered. For more details, see Section 12 of [Lang 87].

4.9 ssucceed

The predicate ssucceed/0 is analogous to squery/0, except that it is used to allow un-
known selectional patterns to succeed. There is also a predicate sfail/0 which can be
used to force unknown selectional patterns to fail. For more details, see [Lang 87].

4 COMMONLY USED PROCEDURES 17

4.10 switches

The switches utility allows you to control the < .peration of PUNDIT. Each switch and its
dependencies are described in more detail below.

?- switches.

1. enter_new_word-----------c-e----- > OFF

2. np_trace----=---=-cccecmccencnaa- > QFF

3. parse_tree-----------c--coeeo-o- > OFF

4. conjunction--=--e--merm-ercemcccc e > ON

5. semantics~----------ecccccmecna-- > OFF

6. translated_grammar_present----~=--------==-- > 0N

7. translated_grammar_in_use-=------ > OFF

8. grinder-----------cc-ce-cccnca--~ > OFF

9. text_mode------------vcmccnecaa > OFF

10. decomposition_trace------------ > OFF

11, summary--------=-cc-vecccccmno— > OFF

12. show_isr------------vcccccccua- > OFF

13. selection--------rec-cccccccrce e > ON

14. enable_db_accesg--------=w-cm-~ > OFF

15. count--~-=---cc-cccccanccana——x > OFF

16. all_time--=--==-==--cccmcccccuax > OFF

17. time_trace--+-----=----ccw-ca- > QFF

18. window_display----------------~ > OFF

Please choose a list of switches, or type "ok." -- [5,7,8].
Changed the switch: semantics-=----~----m--cemcmcccccccnccn .- > ON
Changed the switch: translated_grammar_in_use------------=--=- > ON
Changed the switch: text_mode---=--=-=-==wc-cocccocnconccuu- > ON

Figure 8: Using the switches utility

Several related procedures are useful in this connection. The procedure status dis-
plays current switch settings; flip/1 reverses the setting of one switch (for example,
flip(semantics)); turn.on/1 and turn_off/1 turn a specified switch on and off.

n.Jd

4 COMMONLY USED PROCEDURES 18

4.10.1 enter_new_word

This switch controls the behavior of PUNDIT when lexical lookup encounters a word which
is not in the lexicon and which cannot be analyzed by the Shapes module. If the input to
PUNDIT contains an unrecognizable word and this switch is off, lexical lookup will issue
the following error message:

No definition found for -- <UNKNOWN-WORD>
sentence failed .

If the switch is on,you will be given the following options:

[y

. Respell word
2. Add dictionary entry
3. Word is a proper noun

4. Quit

Choose the first option if you have simply misspelled the word. If the word is a proper
name, you may choose the third option (but no dictionary entry will be created). If
you choose to add a new dictionary entry, the Lezical Entry Procedure is invoked, and
you will be prompted to enter morphological and grammatical information, which may
be optionally saved in a file in your directory (consult {Riley 88} and [Linebarger 88] for
more detail). Note that the information collected will allow PUNDIT to proceed with the
syntactic analysis of the input, but may not be sufficient to enable semantic analysis: for
this, it may be necessary to add new semantics rules and/or update the knowledge base.

4.10.2 np_trace
This switch controls the display of Reference Resolution trace messages concerning the

creation of discourse entities. Turning this switch on will only have an observable effect if
the semantics switch is turned on as well.

4.10.3 parse_tree

This switch controls printing of the parse tree and the 1sSr. The parse tree and ISR are
always computed whether this switch is on or not.

4 COMMONLY USED PROCEDURES 19

4.10.4 conjunction

This switch is one of several switches that cannot be switched. The switch will be on if
the conjunction meta-ruie has been applied to the grammar, and will be off otherwise. If
this switch is off, and you want the grammar to include conjunction, run the procedure
gen_conj/0. After the meta-rule has been applied, the switch will automatically be turned
on. Since the meta-rule cannot be undone, the switch cannot subsequently be turned off.

4.10.5 semantics

Turn this switch on to enable semantic and pragmatic analysis of input; turn it off if
you wish only to parse. Only the parse procedure is sensitive to this switch: the pundit
procedure assumes that you want a full analysis of the input.

4.10.8 translated_grammar_present

The switch indicates whether or not the grammar has been translated into Prolog. The
switch is on in the software which accompanies this document, and cannot be turned off.

If at vour site an image has been developed in which this switch is off, then the grammar
must be run interpreted. Running interpreted is slow, but it facilitates debugging and
rapid grammar changes. Turning the switch on will translate the grammar, which may
take a few minutes; after translation, you will be given the option to compile the resulting
Prolog code. You will normally want to do this, because the compiled translated grammar
provides the fastest parsing. The only reason not to do this is if you want to use the Prolog
debugger on the translated code, which is not advised. If at any time you want to compile
the translated grammar, compile the file translated grammar.pl.

4.10.7 translated_grammar_in_use

This switch allows you to parse with the grammar translated (on) or interpreted (off).
Although the switch is off in the software which accompanies this document, you will
normally want it to be on (for the fastest parsing). The only reason to turn this switch off
is to make use of certain grammar debugging tools that are only available when interpreting
the grammar, such as grinding and counting.

4.10.8 grinder

This switch allows you to trace the application of grammar rules and restrictions. a de-
velopment feature which is only available when parsing with the grammar interpreted (if

.4

———t

Nd

- T m

4 COMMONLY USED PROCEDURES 20

you turn this swiich on, the translated_grammar_in_use switch will automatically be
turned off).

The facility is called grinder because it typically produces considerable output. To reduce

the amount of output, you may choose to trace only the application of specific grammar
rules or restrictions.

| ?- turn_on(grinder).

Enter one of: [<what you want to grind on>],
off, or
all
** WARNING ** If you grind at all, you will automatically run interpreted.
Enter choice:

Figure 9: Setting the grinder switch

4.10.9 text_mode

This switch is used by the procedure parse. If it is on, you will be prompted to enter
a paragraph of text (one or more sentences followed by two carriage returns). Only the
first parse for each sentence in the paragraph will be processed. If the switch is off, you
will be prompted to enter a single sentence, and you may step through all parses for that
sentence.

4.10.10 decomposition_trace

This switch allows you to monitor the course of semantic analysis: if it is on, a variety
of trace messages will be displayed, including the ISR for each clause about to be pro-
cessed and the semantic representation of the input as it is built up. While the switch
was designed to facilitate development of semantics rules and the knowledge base, the
trace messages are also useful when diagnosing the source of an incorrect or unsuccessful
semantic analysis. Note that decomposition.trace has no effect unless the semantics
switch is also on.

4.10.11 summary

This switch controls whether or not a domain-specific module is called to create a sum-
mary of the input text. Since summaries depend on the output of semantic analysis,
the semantics switch must be turned on. Note: the summary application has not been
implemented in the MUCK domain.

4 COMMONLY USED PROCEDURES 21

4.10.12 show.sr

This switch controls the display of the IsR; its effect depends on whether you are using
parse or pundit. If the switch is on and you are using the parse procedure, the incre-
mental ISR will be displayed for each node in the parse tree. This is useful for debugging
changes to the ISR, but not recommended otherwise. Note that the parse_tree switch
must also be on in this case (when using parse, you cannot see the ISR without also
displaying the parse tree).

If you are using the pundit procedure and this switch is on, the ISR for each sentence
will be displayed after syntactic analysis and before semantic analysis. In this case, the
parse_tree switch need not be ou.

4.10.13 selection

This switch controls whether or not the Selection module is invoked in the course of
parsing. If it is on, Selection will be called; if it is off, Selection will not be called. For
more details, see {Lang 87).

4.10.14 enable_db_access

This switch controls whether or not queries and assertions access the database defined for
the current domain. It is used by the procedures parse and pundit. If the switch is on,
domain-specific database definitions will be used to extract database relations from the
results of semantic analysis, and these relations will be displayed on your screen.

Dependencies: semantics must be turned on, and database relations must be defined for
the current domain (<domain>_db_structure.pl and <domain>_db.mapping.pl).

4.10.15 count

This switch should be left off.

4.10.16 all_time

This switch controls the display of the time relations segment of the IDR. If it is off, the
segment is labelled Important Time Relations and contains what are judged to be the
most prominent temporal relations discovered during temporal analysis of the input. If
it is turned on, the segment is labelled Complete Time Relations, and all the relations
that could be discovered are displayed. Turning this switch on will only have an observable
effect if the semantics switch is turned on as well.

4 COMMONLY USED PROCEDURES 22

4.10.17 time_trace

This switch allows you to monitor the course of temporal analysis. If it is on. informative
trace messages will be displayed about situation representations as they are constructed
by the Time component. Turning this switch on will only have an observable effect if the
semantics switch is turned on as well.

4.10.18 window_display

This switch should be left off.

A INSTALLING THE SYSTEM 23

A Installing the System

T

The PUNDIT system runs under release 4.3 of Berkeley UNIX and release 2.2 of Quintus
Prolog. Before installing PUNDIY, a /nlp partition should first be created; this partition
should contain the directory /n1p/nlp/pundit, where the core PUNDIT components will be
installed. Software for the MUCK domain will be installed in the /nlp/nlp/pundit/muck
subdirectory.

If these partitions and directories cannot be created, several absolute path names in PUN-
DIT code will require modification: the files and lines of code are listed below. Note that if
it is necessary to create alternative directories to those recommended, please ensure that
core PUNDIT files and domain-specific files are stored in separate directories.

FILENAME code

punt.pl :- asserta(home_dir("//nlp/nlp/pundit/")).
qprologl5.pl timeCom :- unix(shell(’/mn2/AI/nlp/bin/timeCom’)).
sem _edit.pl :- compile(’“nlp/pundit/semed/correctForms.pl’).
switches.pl compile(’ “nlp/pundit/count_on.pl’).

switches.pl compile(’“nlp/pundit/count_off.pl’).

compilePundit pundit_directory(’/nlp/nlp/pundit’).
compileMuck muck_directory(’/nlp/nlp/pundit/muck’).

We strongly recommend that the files in the PUNDIT home directory (and its subdirecto-
ries) be owned by a special user, and that the file protections be set in such a way that
only this special user can alter these files.

B Building PUNDIT Images

B.1 Building a Core PUNDIT Image

To create a core PUNDIT image, execute the following sequence of steps:

1. get in a directory to which you have write permission
2. start up Quintus Prolog 2.2

3. compile the file /nlp/nlp/pundit/compilePundit

Compiling the compilePundit file will deposit in the current working directory a Prolog
saved state called Pundit.testimage, which is the core PUNDIT image.

B BUILDING PUNDIT IMAGES 24

B.2 Creating a Functional Core PUNDIT Image
The core PUNDIT image itself is not functional (i.e., it cannot be used to parse sentences),
and is only used to build the domain-specific images. If, however, a user wishes to make

a functional image from a core PUNDIT image, the following steps should be executed:

¢ Create a file containing the following Prolog code:

% Turn on conjunction and translate the grammar

i= gen._conj.

:- translate_grammar(’/nlp/nlp/pundit/translated_grammar.pl’).
:- compile(’/nlp/nlp/pundit/translated_grammar.pl’).

:- compile(’/nlp/nlp/pundit/muck/compute_types.pl’).

% These declarations are required for the Selection module
pundit_domain(core).

isa(nothing,nothing).

semantic_type(nothing,nothing).

e Start up the core PUNDIT image and compile the file containing the code above.

e Save the resulting image (e.g., by executing the goal save_program(’Pundit.newimage’).

Note that this image can be used only for parsing, since most of the procedures required
for semantic analysis (e.g. the knowledge base and semantics rules) are domain-specific.

B.3 Creating a Complete Domain-Specific Image

To create a complete domain-specific image (in this case, an image for the Muck domain),
follow these steps: '

e Start up the core PUNDIT image. This image must be the basic non-functional core
PUNDIT image described in Appendix B.1, and not the functional core PUNDIT image
described in Appendix B.2.

e Compile the file /nlp/nlp/pundit/muck/compileMuck.

I\

B BUILDING PUNDIT IMAGES 25

At the beginning of the compilation of the file compileMuck, the user is asked three
questions:

1. Do you want to turn on conjunction? (y or n)
2. Do you want to translate the grammar? (y or n)

3. Do you want to compile the translated grammar? (y or n)

The user will normally answer “y” to each of these. Compiling the compileMuck file will de-
posit in the current working directory another Prolog saved state called Muck.testimage.
which is the complete domain image.

Once the above procedure has been completed, and the user has exited Prolog, either of
these two Prolog saved states can be started up simply by typing Pundit.testimage or
Muck.testimage to the UNIX prompt (or by typing the absolute filename, if the user is
not in the directory in which these files are found). The images can, of course, be renamed
if desired.

C CUSTOMIZING YOUR PUNDIT USER ENVIRONMENT 26

C Customizing Your PUNDIT User Environment

Because PUNDIT is written in Quintus Prolog, we can use one of its features to make
it easy to customize PUNDIT for individual use. When Prolog first starts up, it checks
in the user’s home directory for a file named prolog.ini. If such a file exists, Prolog
will compile it into its current image. Using this feature, we can instruct Prolog to
automatically set PUNDIT switches to those settings that we find most convenient. In
Figure 10 is an example of one such prolog.ini. The example code first checks to see if
Prolog is running a PUNDIT image; if it is, switches are set to the desired settings (in this
case, to those most convenient for grammar development). Observe in particular that the
switch translated grammar_in use is turned on only if translated grammar_present is
already on. At the end, a procedure is called which displays the current switch settings.

turn_on_initial_switches:-

recorded(toggle,switches_are_defined,.),

]

(toggle(translated_grammar_present)->
turn_on(translated_grammar_in_use);
true),

turn_on(parse_tree),

turn_off(selection),

ssucceed,

turn_off (show_isr),

turn_off (semantics),

turn_off (text_mode),

turn_off (summary),

show_herald.

turn_on_initial_switches.

:~ turn_on_initial_switches.

Figure 10: Sample prolog.ini file

D PUNDIT FILES AND DEPENDENCIES 27

' D PUNDIT Files and Dependencies

D.1 Files

Listed below are the core and domain-specific files which comprise the PUNDIT software
h accompanying this document. By convention, domain-specific files are prefixed with the

name of the domain.

o Core Files

—~ Lexical
* dictisr.pl - the core lexicon
* entries.pl - the Lexical Entry Procedure
* lookup.pl - lexical lookup
* reader.pl - procedures to read input
* readin.pl - load or update the lexicon
* shapes.pl - shape descriptors
* tables.pl - lexical entry options

~ Syntax
* Grammar
- bnf.pl - bnf definitions
- compile_types.pl - [created automatically]
. compute_types.pl - compute atomic grammar nodes
- conj.restr.pl - grammar restrictions for conjunction
- count_off.pl - counting procedure
- count_on.pl - counting procedure
- counting.pl - procedures for grinding and counting
- interpreter.pl - grammar interpreter
- 1lspops.pl - elementary restriction operators
- meta.pl - meta grammar for conjunction
- path.pl - navigate the parse tree
- prune.pl - dynamic pruning of grammar options
- restrictions.pl - restrictions
- routines.pl - basic syntactic routines for grammar
- translated.grammar.pl - {created automatically]

. translator.pl - grammar translator
- types.pl - type definitions for grammar
- update.pl - grammar update procedures

_ |

|\

D PUNDIT FILES AND DEPENDENCIES 28

I - xor.pl - ezclusive or mechanism for grammar options
+ Intermediate Syntactic Representation
- compute._trans.pl - compute ISR
- isr_lexical.pl - IsR information for terminal symbols
* - isr_ops.pl - ISR operator definitions
- semproc.pl - simplify ISR translation
- ghow.isr.pl - display procedures for the ISR
: * Selection
- selectiondcg.pl - Selection DCG for analyzing ISR
h - selection.query.pl - Selection user interface
- selection.restr.pl - restrictions which call Selection DCG
- selection_tools.pl - Selection tools
- selection_top_level.pl - record and erase parsed sentences

. selection.utilities.pl - Selection utilities
— Semantics

adjunct.analysis.pl - analyze sentence adjuncts
filter.pl - prepare ISR for semantic analysis
np-int.pl - noun phrase semantics
quantifiers.pl - quantifier binding procedures
semantics.pl - the Semantic Interpreter

* ¥ O O * *

world.pl - general knowledge base procedures

— Pragmatics
* discourse.rules.pl - manage discourse and focus information
* np-ext.pl - Reference Resolution
* time.pl - Time Analysis
— Database Application
* entry.generator.pl - create database relations
— Utilities
access.pl - ISR accessor functions
edit.pl - Prolog Structure Editor

rdb_remove.pl - remove entries from recorded database
show.pl - display ISR, IDR, db relations, etc.
switches.pl - manage PUNDIT switches

* teosting.pl - software testing utility (not for MUCK

*
*
* gqprologl5.pl - code specific to Quintus Prolog
*
*
*

* time display.pl - temporal relations display procedures

D PUNDIT FILES AND DEPENDENCIES 29

trace.messages.pl - semantics trace messages

e
*

utilities.pl - general-purpose procedures
vaxmenus.pl - menu facility

+ ¥ #*

vax_show.pl - top-level non-window display procedures

* ws_support.pl - windowing system procedures
— Other

compilePundit - build a PUNDIT image
demo_top_level.pl -

op.defs.pl - operator declaraticns
punt.pl - on-line PUNDIT help
top_level.pl - PUNDIT front-end

* #* ¥ #* *

¢ Domain-Specific Files for the Muck Domain

— Lexical
* muck.dictisr.pl - incremental lexicon
* mucx-shapes.pl - shape descriptors
— Syntax
* Grammar
- compile_types.pl - [created automatically]
- muck_bnf.pl - updates to the core bnf file
- muck restrictions.pl - restrictions
. translated grammar.pl - [created automatically]
* Selection »
- muck_selection._db.pl - selectional patterns
- SELECTIONAL PATTERNS.pl - [created automatically by Selection]
- USER_CORPUS.pl - [created automatically by Selection]

Semantics

* muck _rules.pl - semantics rules
* muck-world.pl - the knowledge base

Pragmatics

* muck_time.pl - temporal operators and rules

— Database Application D
+ muck.entry_generator.pl - customized version of core file
*+ muck.db_structure.pl - database definition
* muck-db_mapping.pl - database mapping
— Summary Application)]
01

D PUNDIT FILES AND DEPENDENCIES 30

* muck_summary.pl - create summaries (empty file)
— Other

* compileMuck - build MUCK image
* muck.top_level.pl - message entry front-end
* muck_working.pl - message corpus

D.2 Dependencies

While most PUNDIT files can be loaded in any order, certain files and classes of files must
be loaded in a specific order for PUNDIT to run correctly. These ordering dependencies
arise for three main reasons:

1. Compilation of domain-specific files is designed to follow compilation of domain-
independent files. For example, certain core procedures may be abolished and rede-
fined in a domain-specific file; if changes are made to the core file and it is recompiled
in a domain image, the domain-specific file must be recompiled as well.

2. Some of PUNDIT’s data are stored in the Prolog internal database, and multiple
compilations of certain files will result in duplicate database entries. The relevant
files are: the core and domain-specific versions of the grammar and the lexicon
(bnf.pl and dictisr.pl), and the domain selectional patterns and message corpus.

3. Certain operations in PUNDIT are performed at compile time. These include meta-
rules for the grammar, translating the grammar, and computing the types of non-
terminals in the grammar. These operations must be done in order.

If, in the course of development, you wish to compile a new version of the grammar, lexicon,
selectional database or message coipus, you must first remove the internal database entries
generated by the compilation of the previous version. This can be done most simply by
calling the procedure rdb_remove (see Section 4), which removes all database entries of a
specified type.

Compiling changes to selectional patterns: selectional patterns reside in two files:
<domain>_selection.db.pl and SELECTIONAL_PATTERNS.pl. The latter is created au-
tomatically in any directory in which you have run a PUNDIT image with the selection
switch on, while the former resides in the main domain directory, is maintained by hand,
and is compiled into the standard domain image. If you wish to retain the selectional pat-
terns which were originally compiled into the image and to add your personal selectional
patterns, compile <domain>_selection_db.pl and SELECTIONAL PATTERNS.pl, in that
order. Otherwise, compile only the relevant file.

Compiling changes to the message corpus: the message corpus is not compiled into
either the core PUNDIT image or the domain image; instead, it is automatically compiled

r._..___._____—_.——-—_f
|

D PUNDIT FILES AND DEPENDENCIES 31

into your image when you first invoke the punait command. Therefore, if you have
modified this file, you need not recompile it yourself. The system supports personal
versions of the corpus: if the file <domain> working.pl exists in the directory in which
you are running an image, that is the file which will be compiled. If it does not exist, the
file in the main domain directory will be compiled.

Loading changes to the lexicon: multiple lexicon files exist. The core PUNDIT lexicon
(dictisr.pl) resides in the core PUNDIT directory and is incorporated into the core PUN-
DIT 1mage; the domain-specific lexicon (<domain>_dictisr.pl) resides in the domain
directory and is incorporated into the domain image. Since domain images are built from
core images, a domain image contains lexical entries from both the core lexicon and the
domain lexicon, loaded in in that order. In addition, you may have one or more personal
lexicon files created by using the Lexical Entry Procedure. By running rdb_remove to
remove lexical entries, you will have removed all lexical entries, regardless of the file in
which they originated. You will now need to use tne readIn procedure, and load the
relevant lexicon files in sequence.

Implementing changes to the grammar:

1. Read in new grammar file
2. Meta-Rules—run gen_conj/o0.

3. Translate the grammar to Prolog—run translate_grammar/1, whose argument is a
file name (generally translated_grammar.pl).

4. Compile the translated grammar—compile the file named above.

5. Compute the types of the grammar nonterminals—compile the file compute_types.pl.

These steps must be performed in the order listed, except that step 5 may be performed
any time after step 2. Step 2 may be skipped if you do not wish to parse sentences
containing conjunction. Skip both steps 3 and 4 if you wish to parse with the grammar
interpreted (at a significant performance loss). Generally speaking, you will always need
to recompile compute_types.pl.

Compiling changes to files which do not update the recorded database : certain
files exist in core and domain-specific versions (e.g. shapes.pl and <muck>_shapes.pl).
The core versions reside in the core PUNDIT directory and are incorporated into the core
PUNDIT image; the domain-specific versions reside in the domain directory and are incor-
porated into the domain image. Since the domain image is built from the core image,
domain-specific files are compiled on top of core files. If you are working in a domain
image and have changed a file which exists in both core and domain-specific versions, you
will need to recompile both, in that order. Otherwise, simply recompile tl. relevant file.

¥ Y

—rh

E PUNDIT BIBLIOGRAPHY 32

E PUNDIT Bibliography

E.1 Background Reading

Dahl, Deborah A. The Structure and Function of One-Anaphora in English. PhD thesis,
University of Minnesota, 1984; Indiana University Linguistics Club, 1985.

Hirschman, L. Discovering Sublanguage Structures. In Kittredge, R. and Grishman,
R. (editors), Sublanguage: Description and Processing. Lawrence Erlbaum Assoc..
Hillsdale, NJ, 1986.

Palmer, Martha. Driving Semantics for a Limited Domain. PhD thesis, University of
Edinburgh, 1985.

Palmer, Martha S. Semantic Processing for Finite Domains. To appear as a volume
in Studies in Natural Language Processing, Cambridge University Press, editor, Ar-
avind Joshi, 1988.

Sager, Naomi. Natural Language Information Processing: A Computer Grammar of
English and Its Applications. Addison-Wesley, 1981.

E.2 Papers and Presentations

Dahl, Deborah A. Focusing and Reference Resolution in PUNDIT. In Proceedings of the
5th International Conference on Artificial Intelligence. Philadelphia, PA, August
1986.

Dahl, Deborah A. Determiners, Entities, and Contexts. In Proceedings of TINLAP-3.
Las Cruces, NM, January 1987.

Dahl, Deborah, Dowding, John, Hirschman, Lynette, Lang, Frangois, Linebarger, Mar-
cia, Palmer, Martha, Passonneau, Rebecca, and Riley, Leslie. Integrating Syntaz,
Semantics, and Discourse. Darpa Natural Language Understanding Program. R&D
Status Report, Unisys Defense Systems, May 14, 1987.

Dahl, Deborah A. Integration of Semantics and Pragmatics in the Computational Anal-
ysis of Nominalizations. Colloquium presented to the Department of Computer
Science, The Pennsylvania State University, October, 1987.

Dahl, Deborah A., Palmer, Martha S., and Passonneau, Rebecca J. Nominalizations in
PUNDIT. In Proceedings of the 25th Annual Meeting of the Association for Compu-
tational Linguistics. Stanford University, Stanford, CA, July 1987.

Dahl, D. Natural Language Processing for Database Generation: The PUNDIT System.
Paper presented at Al West, May, 1988, Long Beach California.

E PUNDIT BIBLIOGRAPHY 33

Dowding, John and Hirschman, Lynette. Dynamic Translation for Rule Pruning in
Restriction Grammar. In Proceedings of the 2nd International Workshop on Natural
Language Understanding and Logic Programming. Vancouver, B.C., Canada, 1987.

Grishman, R. and Hirschman, L. PROTEUS and PUNDIT: Research in Text Under-
standing. Computational Linguistics 12(2):141-45, 1986.

Hirschman, Lynette. Conjunction in Meta-Restriction Grammar. Journal of Logic Pro-
gramming 4:299-328, 1986.

Hirschman, Lynette. Natural Language Interfaces for Large Scale Information Process-
ing. Technical Advisory Panel Meeting for the Transportation Systems Center, De-
partment of Transportation. Boston, MA, May, 1987.

Hirschman, Lynette, Tutorial on Natural Language and Logic Programming. 1987 Logic
Programming Symposium, San Francisco, Aug. 31-Sept. 4, 1987.

Hirschman, L. A Meta-Treatment of wh-Constructions. To be presented at META 88
Workshop on Meta Programming in Logic Programming.

Hirschman, Lynette, Dahl, Deborah, Dowding, John, Lang, Frangois-Michel, Linebarger,
Marcia, Palmer, Martha, Riley, Leslie, and Schiffman, [Passonneau] Rebecca. The
PUNDIT Natural Language Processing System. Presented at the Eleventh Annual
Penn Linguistics Colloquium, Philadelphia, PA, February, 1987.

Hirschman, L., Hopkins, W.C., Smith, R.C. Or-Parallel Speed-up in Natural Language
Processing: A Case Study. To be presented at the 5th International Logic Program-
ming Conference, Seattle, August, 1988.

Hirschman, L. and Puder, K. Restriction Grammar in Prolog. In Proceedings of the First
International Logic Programming Conference, pages 85-90.

Hirschman, L. and Puder, K. Restriction Grammar: A Prolog Implementation. In War-
ren, D.H.D. and Van Caneghem, M. (editors), Logic Programming and its Applica-
tions, pages 244-261. Ablex Publishing Corp., Norwood, NJ, 1986.

Lang, Francois-Michel and Hirschman, Lynette. Improved Portability and Parsing through
Interactive Acquisition of Semantic Information. 1n Proceedings of the Second Con-
ference on Applied Natural Language Processing. Austin, TX. February 1988,

Linebarger, Marcia C., Dahl, Deborah A., Hirschman, Lynette, and Passonneau, Re-
becca J. Sentence Fragments Regular Structures. In Proceedings of the 26th Annual
Meeting of the Association for Computational Linguistics. Buffalo, NY, June 1988S.

Palmer, Martha S., Dahl, Deborah A., Passonneau, Rebecca J., Hirschman, Lynette,
Linebarger, Marcia, and Dowding, John. Recovering Implicit Information. In Pro-
ceedings of the 24{th Annual Meeting of the Association for Computational Linguis-
tics. Columbia University, New York, August 1986.

N N w0

E PUNDIT BIBLIOGRAPHY 34

Paiwer, Martha, and Linebarger, Marcia. Status of Verb Representations in PUNDIT.
Presented at Theoretical And Computational Issues in Lexical Semantics, Brandeis
University, Waltham, Mass, April 21-24, 1988.

Palmer, Martha, Hirschman, Lynette, and Dahl, Deborah. Text Processing Systems.
June 1988. Tutorial presented at the 26th Annual Meeting of the Association for
Computational Linguistics, Buffalo New York.

Passonneau, Rebecca J. Situations and Intervals. In Proceedings of the 25th Annual
Meeting of the Association for Computational Linguistics, pages 16-24. 1987.

Passonneau, Rebecca J. A Computational Model of the Semantics of Tense and Aspect.
Computational Linguistics (forthcoming), 1988.

E.3 Technical Documentation

Ball, Catherine N., Dahl, Deborah A., Dowding, John, Hirschman, Lynette, Linebarger,
Marcia, Palmer, Martha, and Passonneau, Rebecca. PUNDIT Tutorial Notes. In-

ternal document, Unisys Corporation, 1987.

Lang, Francois-Michel. A User’s Guide to the Selection Module. LBS Technical Memo
68, Unisys Corporation, 1987.

Linebarger, Marcia C. A Guide to Object Options in PUNDIT. Technical Report, Unisys
Corporation, 1988.

Riley, Leslie. A Guide to the PUNDIT Lezical Entry Procedure. Technical Report, Unisys
Corporation, 1988.

Riley, Leslie and Dowding, John. The Prolog Structure Editor. LBS Technical Memo 29,
Unisys Corporation, 1986.

Schiffman (Passonneau), Rebecca J. Designing Lezical Entries for a Limited Domain.
LBS Technical Memo 42, Unisys Corporation, April 1986.

"

REFERENCES 35
References
[Dahl 84] Dahl, Deborah A. The Structure and Function of One-Anaphora in En-

glish. PhD thesis, University of Minnesota, 1984.

(Lang 87] Lang, frangois-Michel. A User’s Guide to the Selection Module. LBS
Technical Memo 68, Unisys Corporation, 1987.

[Linebarger 88] Linebarger, Marcia C. A Guide to Object Options in PUNDIT. Technical
Report, Unisys Corporation, 1988.

[Passonneau 87) Passonneau, Rebecca J. Situations and Intervals. In Proceedings of the
25th Annual Meeting of the Association for Computational Linguistics,
pages 16-24. 1987,

[Riley 86] Riley, Leslie and Dowding, John. The Prolog Structure Editor. LBS
Technical Memo 29, Unisys Corporation, 1986.

[Riley 88] Riley, Leslie. A Guide to the PUNDIT Lezical Entry Procedure. Techni-
cal Report, Unisys Corporation, 1988.

[Sager 81] Sager, Naomi. Natural Language Information Processing: A Computer
Grammar of English and Its Applications. Addison-Wesley, 1981.

PUNDIT
Lexical Entry Procedure

User’s Guide*

Version 1.0

August 10, 1988

Unisys Logic-Based Systems
Paoli Research Center
P.O. Box 517, Paoli, PA 19301

*This work has been supported by DARPA contract N00014-85-C-0012, administered by the Office of Naval
Research.

_i®

Contents
1 Introduction 1
2 Getting Started 1

3 Major Word Classes
3.1 Determiners L e e e
3.2 Quantifiers e
3.3 Adjectives L L e e e e e e
34 Nouns e e
35 Verbs e e

S T N R U

4 Exiting the Lexical Entry Procedure 8

A Object Options 10

'

n_

1 Introduction

The Lexical Entry Procedure has been designed to provide consistency, completeness, and speed of
entry for new words. The procedure elicits relevant linguistic information from the user, computes
dependencies between attributes, and prompts for morphologically related forms (offering a “guess”
as to the correct form). The program then automatically creates a set of related dictionary entries,
with as much structure-sharing among the entries as possible. Before the entries are actually
entered in the database or written to a file, the user may inspect and edit any entries created.

2 Getting Started

The Lexical Entry Procedure may be invoked automatically or explicitly.

When PUNDIT fails to find a definition for some token in the input stream, and the switch
enter new_word! is on, lexical lookup will trap to the following menu:

Respell word

. Add dictionary entry
. Word is a proper noun
. Quit

o W N -

Option 2 invokes the Lexical Entry Procedure. The procedure may also be called directly by
executing the goal:

?- recordNewEntry(<word>).

where <word> is the word whose lexical entry you wish to create. Note that the Lexical Entry
Procedure is designed only for the entry of new words: if you wish to revise the lexical entries for
an existing word, you must use the procedure edit_word (see [Riley 86]) instead.

Upon entering the Lexical Entry Procedure, the user is given the option to save the resulting lexical
entries into a file in the current working directory. The name of this file is automatically generated
as <domain>.dictisr.pl.<id>2. Entries in this file must then be added to the PUNDIT lexicon.

The user is next prompted for the root of the word, which is the most basic form of the word
in the same grammatical category. Here, it is best to think in terms of inflectional rather than
derivational morphology: for example, the root of thought in They thought about it is think, while
the root of thought in That was a good thought is thought.

After entering the root and (optionally) any abbreviations, the user is prompted for morphological
and grammatical information.

1For more information on this and other PUNDIT switches, please consult [Ball 88).

2For example, a file created using the Lexical Entry Procedure in the MUCK domain on August 10 might be
named muck.dictisr.pl.10aug1313. The last element of the name distinguishes multiple files created on the same
date.

The highest-level menu® in the Lexical Entry Procedure is the menu of grammatical categories, or
word classes:

Word Classes

1. Determiner 2. Quantifier 3. Adjective
4. Noun 5. Verd 6. Adverb
7. Preposition 8. More/Other

The next sections cover major word classes and their features in detail. The diagram below shows
the features and morphological information which are collected for each word class. Items enclosed
in { } are optional, while items enclosed in < > reflect information that the user may or may not
be asked to provide, depending on previous choices.

DETERMINER QUANTIFIER NOUN ADJECTIVE VERB ADVERB PREPOSITION
| | | | 1
| | | |
| | | |
Singular vs. 1. {clausal complements} £1 1]
Plural 2. {adverbial variants}

| |
| {
I (|
Mass vs. Singular vs. 1. <plural form>
Count Plural 2. {possessive forms}
3. {adjectival variants}

|
|
|
|
|
|
|
1
|
|
|

— e mam cmn e e e — e —— e ——

e e r————

!
!
[
|
|
|
|
]
|
1
|
!
|
l
|
|

|
| ! | |
| (| |
Definite va. Singular vs. Object List 1. 3rd person singular
Indefinite Plural ! 2. past tense
| 3. past participle
S P 4. present participle
| |

<Pvals> <Dpvals>

3 A few notes on using menus:
e When prompted for a list of items, the user may enter either a single item or a Prolog list, followed by a
period. The examples on the following pages illustrate both possibilities.

o The appearance of More/Other in a menu indicates that the choices offered may not be exhaustive. By
selecting this option, the user may input items of his or her choice.

3 Major Word Classes

3.1 Determiners

i Determiners are classified according to definiteness and number. A sample definition for aenother
*»% another -~ has been classified as a determiner
A definite or indefinite determiner -- use menu
1. Detfinite
2. Indefinite
3. Neither
Please choose an item -- 2.

Singular or plural -- use menu

1. Singular

2. Plural
3. Neither
Please choose an item —— 1.

The following lexical entry is created:
: (another,xroot:another, [t: [indef,singular]])

Each lexical entry consists of the citation form, followed by the root, followed by a list of lexical
classes and their attributes. The letter ¢ in this lexical entry designates the class of determiners?.

3.2 Quantifiers

Quantifiers are classified according to number. A sample definition for some is given below:

+ gome - has been classified as a quantifier

Singular or Plural -- use menu

1. Singular
2. Plural
3. Neither

Please choose an item -~ 2.

4The reader may find it useful to consult [Fitzpatrick 81] for a more detailed discussion of this and other word
classes in the context of a related system.

Nl

The following lexical entry is created:

: (some,root:some, [q: [pluralll):

3.3 Adjectives

The Lexical Entry Procedure asks two questions about adjectives:

1. Can this adjective take a clausal complement (y or n)?

2. Does <ADJECTIVE> have a(n) adverb form (y or n)?

If the answer to the first question is y, the user will be asked to classify the valid clausal complements

as one or more of the following:

e asentl

Takes a tensed clause complement. Subject must be pleonastic it.
Example: It is clear that he is tired.

e asent3

Takes a tensed clause complement. Subject need not be pleonastic it.
Example: I am glad that she won.

e aasp:[equi_adj]

Takes an infinitival complement with equi argument structure.
Example: They are eager to please.

e aasp:[raising.adj]
Takes an infinitival complemen

t with raising argument structure (see the attached guide to

PUNDIT object types for the distinction between equi and raising).
Example: She is certain 1o be re-elected.

If the user answers y to the second question, the procedure will prompt for the adverbial form.

A sample definition for the adjective

certain is given below:

*** certain - has been classified as an adjective.
Can this adjective take a clausal complement (y or n)? y

Choose whatever features apply:

1. asentl, Eg: It
2. asent3. Eg: He
3. aasp:[equi_adj]. Eg: He
4. aasp:(raising_adj]. Eg: He

Please chcose a list of items -- [1,2,4].

Does certain have a(n) adverb form (y or n)? y

Enter the adverb of certain --
Is certainly correct? y

is likely that he will repair it.
is glad that it is repaired.

is unable to repair it.

is likely to repair it.

certainly.

. The following lexical entries are created:

:(certain,root:certain, [adj: [asent1,asent3,aasp: [raising_adjl]])
t(certainly,roct:certain, [d])

3.4 Nouns

A noun is first classified as mass or count. If the noun is a count noun, the procedure prompts for
number information and plural form (it is assumed that the root is singular). If it is mass noun,
the procedure asks whether it can have a plural form different from its singular form. The user is
then asked about adjectival and possessive forms. Sample definitions for the count noun woman
. and the mass noun mud are given below.

goman -~ has been classified as a noun.

Mass or Count Noun =-- use menu
1. Count Noun
2. Mass Noun
3. Other
Please choose an item ~- 1.
Singular or Plural -- use menu
1. Singular
2. Plural
3. Neither
Please choose an item -- 1.

Is "womans" the plural form of woman? n

Enter the correct form -- women.
Is women correct? y

Does woman have a(n) adjective form (y or n)? n

Does woman have a singular possessive form (y cr n)? y
e Is "woman’s'" the singular possesssive form of woman? y

Does woman have a plural possessive form (y or n)? y

Is "womans’"” the plural possesssive form of woman? n

Enter the correct form -- ’women’’s’.

-

dns 3

. Is women’s correct? y

Note in particular the manner of entering forms with apostrophes (woman’s). Because Prolog is
being used to read the user’s response, an apostrophe must be entered as two single quotes, and
the entire word must be enclosed in single quotes: 'woman’ s’ instead of woman’s.

The following lexical entries are created:
: (woman,root :woman, [n: [11,singular],11: [ncount1]])
: (women,root:woman, [n: [11,plurall])

h :(woman’s,root:woman, [ns: [11,singular3])
:(women’s,root:woman, [ns: [11,plurall])

A sample definition for the mass noun mud:

#** mud - has been classified as a noun.
Mass or Count Noun -- use menu

1. Count Noun
2., Mass Noun
3. Other

Please choose an item —— 2.

Can this mass noun have a plural form different from its singular form (y or n)? n
Does mud have a(n) adjective form (y or n)? y

Enter the adjective of mud -- muddy.
Is muddy correct? y

Does mud have a singular possessive form (y or n)? y
Is "mud’s" the singular possesssive form of mud? y

Does mud have a plural possessive fovm (y or n)? n

The following lexical entrics are created:

:(mud,root:mud, [n: [11],11: [collective]])
: (muddy,root:mud, [adj])
:(mud’s,root:mud, [ns: [11,singular]])

N

3.5 Verbs

When entering a verb, the user is first prompted for the object types. For a complete description
of the object types currently implemented, see [Linebarger 88], attached as an appendix to this
guide.

If the object contains a preposition or particle, the user will be prompted to enter valid preposition
values (pvals) and particle values (dpvals). Note that the passive objects are automatically
computed, as well as the pvals and dpvals for the passive objects.

The user is also asked to enter certain morphological variants of the verb, such as the past tense
and participial forms. A sample definition for the verb think is shown on the following page.

*** think - has been classified as a verb form

Choose the objectlist -- use menu

1. nullobj 2. nstgo 3. pn 4. npn 5. pnn

6. objbe 7. eqtovo 8. tovo 9. ntovo 10. objtovo
11. thats 12. assertion 13. pnthats 14. svo 15. cishould
16. pnthatsvo 17. snwh 18. nswh 19. nthats 20. sven
21. nn 22. sobjbe 23. na 24. astg 25. dstg
26. dpl 27. dp2 28. dp3 29. dpipn 30. dp2pn
31. dp3pn 32. dpsn 33. More/Other

Please choose a list of items ~- [1,3,11,27,28,12,22].

Classify the prepositions for the PN object of "think" --

1. about 2. after 3. against 4. at 5. by
6. from 7. for 8. in 9. into 10. of
11. oft 12. on 13. over 14. to 15. up
16. upon 17. with 18. More/Other

Please choose a list of items —- 1.

Classify the particles for the DP2 object of "think" --

1. about 2. around 3. away 4. by
6. down 6. in 7. oft 8. on
9. out 10. over 11. through 12. to
13. up 14. More/Other

Please choose a list of items -- 13.

Classify the particles for the DP3 object of "think" --

1. about 2. around 3. away 4. by
5. down 6. in 7. oft 8. on
9. out 10. over 11. through 12. to
13. up 14. More/Other
Please choose a list of items -- 13. R
y
7

Is "thi :s" the present third person singular form of think? y
Is “thinked" the past tense of think? n

Enter the correct form -- thought.
Is thought correct? y

Is "thought" the past participle of think? y

Is "thinking" the present participle of think? y
The following lexical entries are created:

:(think,root:think, [v:[12],tv: [12,plurall,
12:[objlist: [thats,nullobj,assertion,sobjbe,pn: [pval: [aboutl],
dp2: [dpval: [upl],dp3: [dpval: [upl]11]1).
:(thinks,root:think, [tv:[12,singular]]).
: (thought,root:think, (tv: [12,past],ven: [14],
14:[12,pobjlist: [assertion,objbe,thats,dpl: [dpval: [upl],
p:[pval: [about]]11]).

:(thinking,root:think, [ving: [12]]).

4 Exiting the Lexical Entry Procedure

After all the entries have been created, the user is given the opportunity to inspect each entry and
to do one of the following:

1. Enter It
2. Do Not Enter It
3. Edit It

Option 1 will cause the new lexical entry to be entered in the Prolog database and written to a file
(if the user has so directed the procedure). Choosing option 2 will cause the entry to be ignored. If
option 3 is chosen, the Prolog Structure Editor will be invoked on that lexical entry (see [Riley 86]
for more details). Note that no action is taken until one of these choices is made for each entry.

If you have chosen to write the lexical entries to a file, you may now wish to add these entries to
the core lexicon or the domain lexicon. This must be done manually. You may then wish to load
the entire lexicon into an image for testing; consult [Ball 88] for the procedures to be followed.

References

[Ball 88)

(Fitzpatrick 81]

[Linebarger 88]

(Riley 86]

Ball, Catherine N., Dowding, John, Lang, Frangois-Michel, and Weir, Carl. PUN-
DIT User’s Guide. Technical Report, Unisys Corporation, 1988.

Fitzpatrick, Eileen and Sager, Naomi. Appendix 3: The lexical subclasses of the
LSP String Grammar. In Sager, Naomi (editor), Natural Language Information
Processing: A Computer Grammar of English and Its Applications, pages 322-374.
Addison-Wesley, Reading, Mass., 1981.

Linebarger, Marcia C. A Guide to Object Options in PUNDIT. Technical Report,
Unisys Corporation, 1988.

Riley, Leslie and Dowding, John. The Prolog Structure Editor. LBS Technical
Memo 29, Unisys Corporation, 1986.

P A Object Options

10

A Guide to Object Options in PUNDIT*

h Marcia Linebarger

August 10, 1988

*This work has been supported by DARPA contract N0O0O14-85-C-0012, administered by the Office of Naval
Research.

s

Contents

1 Introduction 1
1.1 Handling of Passive in the Lexicon 1
1.2 ThelISR e e 1
1.3 Onpvalsanddpvals 2

2 Object Options 2
2.1 NULLOBI e 2
2.2 NSTGO e 2
2.3 PN . e e e 3
2.4 NPN . . 4
2.5 PNN . . e e 4
26 OBIBE e 5
2.7 EQTOVO e e e e e 5
2.8 TOVO e]
2.9 NTOVO . . . e e 6
2.10 OBITOVO e e 7
2,11 THATS . . . e e 8
2.12 ASSERTION e e e 8
2.13 PNTHATS e e e e e 8
2.14 SVO . . . e 9
2.15 CISHOULD e e 9
2.16 PNTHATSVO e e e e e e e e 10
2.17 SNWH e e e e 10
2.18 NSNWH e e 10
2.19 NTHATS . . . o e e 10
2.20 SVEN e 10
2.21 NN . e e 11
222 SOBIBE e 12
2.23 NA L e e 12
224 ASTG e e 13
2.25 DSTG 13
2.26 DP1 e 13

il

2.27T DP2 . . e e 14

228 DP3 . . . e 14

2.29 DPIPN . . . e 14

2.30 DP2PN . . . e 15

231 DP3PN . . . e 15

2.32 DPSN . . e e e 15
il

W W TTTTTE T

1 Introduction

This document describes the current object options of the grammar, with the corresponding passobj
(passive object) options and 1sRs (Intermediate Syntactic Representations — see below), and with
some very limited annotations on their structural quirks, semantics, raison d’étre, and so forth.
The numbering of object options below is the same as that in the Lexical Entry Procedure, and
these notes are intended for use during entry of new lexical items. Object options which are
restricted to one or two verbs (such as BE_AUX, VENO, and VO, associated with the auxiliaries
be, have, and modals) are not included in this list, because we assume that most verbs with these
subcategorizations have already been entered in the lexicon. Such object types may be assigned
to a new verb by choosing Other in the Lexical Entry Procedure meau.

1.1 Handling of Passive in the Lexicon

The parse tree built by PUNDIT represents surface structure; transformations such as passivization
and wh-movement are not ‘undone’ at this level. Thus verbs must be subcategorized for the objects
they take in both active and passive. (Note on terminology: objects of the verb in its active form are
called object; the list of a verb’s objects in the lexicon is called the objlist. Similarly, passive
objects are called passobj, and the list of a verb’s passive objects in the lexicon is called the
pobjlist. Note the systematic ambiguity of the word ‘object’.) Because the correlation between
an active and a passive object is predictable, the Lexical Entry Procedure automatically computes
the passobj on the basis of the active objects selected. Verbs which do not passivize receive no
pobjlist whatsoever in the lexicon; they should not be subcategorized for NULLOBJ in the passive.
The by-phrase, if present, is parsed as a sentence adjunct rather than a passobj. Note that although
some active object options (e.g., NULLOBJ) are never associated with a corresponding passive
object, since they never passivize, others may or may not be; since the Lexical Entry Procedure
automatically computes the corresponding passobj for any object type which passivizes, it is up
to the user to edit out of the lexical entry any unacceptable passobj.

1.2 The ISR

Although the parse tree represents surface structure, the ISR is a somewhat more abstract level of
syntactic representation, which, like the ‘deep structure’ of transformational grammar, provides a
more transparent representation of argument structure. For example, the surface subject of the
passive is represented in the ISR as the object of the verb. As in many current syntactic theories,
the subject position of a passive ISR remains unfilled (in PUNDIT, it is filled with the dummy
element passive), and it is the function of semantic rules to determine whether an element in a
by-phrase may fill the semantic role which would be assigned to the subject. Thus, at least for the
object, active and passive sentences can be interpreted by the same semantic mapping rules. In
some cases, the ISRs of passive sentences diverge significantly from the surface structure in order to
bring about this parallelism between active and passive; for example, the ISR for a pseudopassive
such as The patient was operated on reconstructs the prepositional phrase. Thus the surface parse
tree provides the bare preposition on as object of the verb, while the ISR provides the prepositional
phrase on the patient as object.

The 1SR also fleshes out the argument structure of constructions such as equi and raising, as seen in
connection with object types EQTOVO, ToVO, and OBJTOVO below; and it regularizes the surface

.

N W

order of object types which differ from one another only in the order of their components (such as
NPN and PNN, or DP2 and DP3).

Because there are such divergences between the ISR and the surface parse, and because the Isr
plays an important role as the interface between syntax and semantics, the 1SRs associated with
each object type and its passivized counterpart are given below. For ease of exposition, only the
prettyprinted ISR is displayed.

1.3 On pvals and dpvals

Object types containing prepositions can be subcategorized for particular prepositions, via pval
sublists in the lexicon; object types containing particles can be subcategorized for specific particles
via dpval lists in the lexicon. The Lexical Entry Procedure queries the user to create these lists
where appropriate.

2 Object Options

2.1 NULLOBJ

A verb which takes no complement at all is subcategorized for NULLOBJ. Example: The pun.p
failed, which receives the following I1SR:

OPS: past
VERB: fail
SUBJ: the pump (sing)

Such verbs do not passivize, hence there is no corresponding passobj.

2.2 NSTGO

This is the simple transitive verb option, a noun phrase non-predicative direct object. Example:
She repaired the sac, which receives the following ISR. The direct object receives the semlabel obj.
(Semlabels are applied to elements in the ISR to label those grammatical functions which play a
role in semantic rules. In the prettyprinted iSRs, the semlabels of all postverbal elements appear
in capital letters, e.g. SUBJ: in the example below.)

oPS: past

VERB: repair

SUBJ: pro: she (sing)
O0B): the sac (sing)

The passobj counterpart of NSTGO is NULLOBJ, as in The sac was repaired (by her). The by
phrase is parsed as a sentence adjunct; this is not evident in the ISR below because the isr (for
reasons having to do with the functioning of the semantic interpreter) fails to indicate whether a
prepositional phrase occurs as a sentence adjunct or a verb object.

- M

OPS: past
VERB: repair
SUBJ: passive
OBJ: the sac (sing)
PP: by
pro: her (sing)

Note that the surface subject is represented as the object in the 1SR. The subject position of the
ISR is filled with the dummy element passive.

2.3 PN
This is a prepositional phrase object. Example: They operated on him:

OPS: past
VERB: operate
SUBJ: pro: they (pl)
PP: on
pro: him (sing)

Corresponding passobj: isolated preposition. Example: He was operated on; in the ISR, the prepo-
sitional phrase is reconstructed:

OPS: past
VERB: operate
SUBJ: passive
PP: on
pro: he (sing)

When do we want PN {c »e an-lvsed as an obiect cption rather than a sentence adjunct (sa)? As
far as I can tell, the following are the most relevant cases in which the PN object is subcategorized
for in this system:

(a) The verb is unacceptable with NuLLOBJ, and PN will suffice. E.g., *He told (ignoring
elliptical reading). But He told of great adventures.

(b) The VERB + PN has an idiomatic meaning (or just feels like a unit): the surgeon operates
on the patient and the surgeon operates on the table represent, under their most plausible
readings, the PN object and sa attachments respectively. Similarly: Bill turned into the
side sireet (SA expressing where he turned) vs. Bill turned into an orangutang (PN
object).

The possibility of a pseudopassive doesn’t seem to be a motivating factor: sleep in our lexicon isn’t
subcategorized for in or on, etc., yet you can say That ded was slept tn by George Washington or
This floor has been slept on by countless fatigued partygoers. If a verb with PN object can passivize
at all, as above, its passobj will be a P (at the moment this passobj is not listed under very
many verbs in the lexicon.) Thus it is currently an unsolved problem how to treat pseudopassives

corresponding to active sentences in which the PN is in SA as in the sleep example above: we don’t
really want to allow P as an sa option generally. So another possibility would be to allow PN object
(with no subcategorization for specific lexical items) more freely, automatically generating the pN
object possibility for ANY verb which allows pseudopassive. The cost of this is that we lose the
way of structurally representing differences such as that between, e.g., operate on the table and
operale on the patient.

2.4 NPN
and
2.5 PNN

NPN consists of an NSTGO followed by a PN, as in They returned the disk drive to the factory:

OPS: past
VERB: return
SUBJ: pro: they (pl)
0BJ: the disk~drive (sing)
PP: to
the factory (sing)

See above for discussion of when to include the PN in object rather than sA. Another criterion: is
there a corresponding PNN object? PNN is the BNF node associated with NPN which has undergone
a shifting of the NP, constrained by various stylistic factors such as heaviness. It’s one of the
unpleasant facets of the grammar we use that this extraposition gets expressed as a different BNF
node. Subcategorization for PNN follows redundantly from subcategorization for NPN, since the
acceptability of PNN depends not on the vetb but on the NP itself. (Compare He presented to us
an enormous chocolate cake iced with yellow daffodils vs. the much less pleasing He presented to
us a cake.)

Note that a sequence of NP + PN need not be parsed as NPN; for example, I found Louise in a
state of euphoria should probably be classed as a SOBIBE (see below), given related sentences such
as I found Louise euphoric, I found Louise a changed woman. The PN here is predicated of Louise
rather than simply being an argument of find. In contrast, the PN in [found Louise on the fourth
try seems more like an SA describing the circumstances of the event of finding Louise, certainly not
a predication stating that Louise was on the fourth try.

The passobj counterpart of NPN/PNN is PN, as in The disk drive was returned fo the factory:

oPS: past
VERB: return
SUBJ: passive
OBJ: the disk~drive (sing)
PP: to
the factory (sing)

(Compare *The factory was returned the disk drive to: no pseudopass've is possible here except
with idiomatic expressions such as He was given a talking to.)

2.6 OBIJBE

OBJBE, the object type associated with be as a main verb, is subcategorized for by verbs other
than de. OBJBE expands to an NP, an adjective phrase, or a PP; not every verb allows all these
expansions, as indicated by bvals in the lexicon. (The Lexical Entry Procedure does not currently
solicit bvals.) Examples: The pump appears inoperative:

0PS: present

VERB: appear

SUBJ: the pump (sing)
ADJ: inoperative

and She became a field engineer:

OPS: past

VERB: bacame

SUBJ: pro: she (sing)

PREDN: a field“engineer (sing)

These verbs don't passivize at all, so they have no passobj counterpart (and hence no pobjlist is
created for them by the Lexical Entry Procedure.)

Thus an NP following the verb can be analysed either as an NSTGO (He photographed the President’s
advisor) or as an OBJBE (He became the President’s advisor). This enforces the well-known fact
that predicative verbs do not passivize: The best cars are made by the Japanese (active form:
nstgo) vs. *The best cooks are made by Italians (active form: objbe}.

2.7 EQTOVO

An example of EQTOVO is The fe wanis to repair the disk drive. EQTOVO corresponds to what is
traditionally known as an infinitival complement with subject controlled equi; the subject of the
matrix verb is understood to be also the subject of the infinitive. This is made explicit in the ISR,
where the matrix subject is copied into the infinitive; the ID variables for the two NPs are identical
(a fact which is obscured below because the ISR prettyprinter does not display variables):

OPS: present

VERB: want

SUBJ: the field“engineer (sing)

0BJ: OPS: untensed
VERB: repair
SUBJ: <the field“engineer (sing)
OBJ: the disk“drive (sing)

There is no passobj, as these structures do not passivize.

2.8 TOVO

An example of Tovo is The pump seems to be failing. The Tovo object corresponds to what is
traditionally known as raising; the matrix subject is analysed as an argument of the infinitive, but
not of the matrix verb, which has the infinitive as its sole argument. This is made explicit in the
ISR, where the reconstructed infinitival clause is the subject:

oPs: present

VERB: seem
SUBJ: OPS: untensed,prog
VERB: fail

SUBJ: the pump (sing)

As for passobj, raising verbs don’t passivize, so there is no pobjlist.

As noted above, these two object types EQTOVO and Tovo differ in their argument structure, and
hence in their selection properties, differences which are made explicit in the 1sR. In the EQToOVO
(equi) case, the phonologically null subject of the infinitive undergoes selection with the matrix
verb as well as with the verb in the infinitive. That is, the fe is really the subject of both waent and
repair in The fe wants to repair the disk drive. One can run afoul of selection restrictions between
this noun and either verb: The number 12 wants __ to be divisible by 8, and The cat wants . to be
divisible by 3 are both anomalous, due to violations of selection between the matrix subject and
the matrix and embedded predicates, respectively.

For the bare Tovo case, the matrix subject is semantically just the subject of the lower verb; that
is, the matrix verb is really a one-place predicate with a clause as its argument. (Thus the 1SR
subject of The pump seems to be failing is not the pump but the pump to be failing.) There’s no
selection between the surface NP subject (the pump) and this matrix verb (seem): whatever can
be subject of the infinitival verb V can also be subject of seem to V...D. Sager refers to these as
aspectual verbs. They include: seem, appear, start, tend, continue, come (as in [t came to rotate,
NOT as in I come to bury Caesar, not to praise him. The latter is a purposive TOVO in SA.)

To summarize: with EQTOVO, the matrix subject is an argument of the matrix verb and also of the
verb in the infinitive; with Tovo, the matrix subject is an argument only of the lower (infinitival)
verb. (The two types correspond to equi and raising, respectively.)

In Sager’s grammer, these two categories are conflated. Some existing lexical entries therefore
req.ire updating, since this distinction was introduced after PUNDIT’s lexicon was established.

2.9 NTOVO

Like oBiTOVO (see below), NTOVO is associated with surface sequences of the form ‘NP to vp’
following the matrix verb; it corresponds to what is sometimes called ‘exceptional case marking
(EcM)’. An example of NTovo is The factory expects the fe to repair the sac:

oPs: present

VERB: expect

SUBJ: the factory (sing)
0BJ: ops: untensed

.4

INd

VERB: repair
SUBJ: the field“engineer (sing)
OBJ: the sac (sing)

Thus the field engineeer is the subject of the clause but is not a direct object of the matrix verb;
the factory does not expect the fe, but rather it expects the proposition expressed by the infinitive.
(A consequence of this is that pleonastic elements such as there may occur in subject position of
NTOVO: [expect there o be unlimited champagne.)

The passobj counterpart of NTOVO is TOVO, as in The fe is expected to repair the sac; the ISR rule
associated with Tovo will automatically reconstruct the infinitive the fe to repair the sac:

OPS: present

VERB: expect

SUBJ: passive

0BJ: OPS: untensed
VERB: repair
SUBJ: the field“engineer (sing)
OBJ: the sac (sing)

2.10 OBJTOVO

OBIJTOVO corresponds to object controlled equi; in The factory told the fe to repair the pump, the
fe is an argument (indirect object?) of the matrix verb and subject of the infinitive:

OPS: past

VERB: tell

SUBJ: the factory (sing)

D_OBJ: the field~"engineer (sing)

0BJ: OPS: untensed
VERB: repair
SUBJ: the field engineer (sing)
O0BJ: the pump (sing)

The semlabel d-obj (dative object, formerly known as inner obj) is used here to capture the
parallelism with The factory told the fe the truth.

The passobj counterpart is EQTOVO. The ISR rules associated with EQTOVO reconstruct infinitive
as above for The fe was told to repair the sac:

QPSs: past

VERB: tell

SUBJ: passive

D_OBJ: the field“engineer (sing)

0BJ: OPS: untensed
VERB: repair
SUBJ: the field engineer (sing)
O0BJ: the sac (sing)

Major differences between NTOVO, OBJTOVO: in NTOVO, the subject of the infinitive is an argument
ONLY of the lower verb. The entire infinitival clause is itself the argument of the matrix verb.
There are no selection restrictions between, e.g., believe and the table in [believed the table to
be quite atiractive. In 0BITOVO, on the other hand, the noun phrase between the matrix verb
and the infinitive is an argument of BOTH matrix and embedded predicates, as demonstrated by
the anomaly of I persuaded the table to seat 6 (violates selectional constraints on persuade) and |
persuaded the man to be divisible by 2 (violates selectional constraints on divisible). also, NTovo
but not 0BJTOVO allows there as subject: I expect there to be a diplomat at the party (*1I persuaded
there to be a diplomat at the party).

PUNDIT does not currently handle the rare cases of subject-controlled equi in verb complements of
the form ‘NP to VP’, as in Mary promised Louise to arrive on time. This form of control is largely
restricted to the single verb promise.

2.11 THATS

and

2.12 ASSERTION

THATS and ASSERTION are both tensed clauses, with and without the complementizer that, as in
The fe said that the disk drive was tnoperative:

0PS: past
VERB: say
SUBJ: the field“engineer (sing)
0BJ: OPS: past
VERB: be
SUBJ: the disk“drive (sing)
ADJ: inoperative

Verbs subcategorized for THATS and ASSERTION are automatically subcategorized for these same
objects in the passive, given the possibility of pleonastic subjects, as in It 1s said that whales are
highly intelligent. Work remains to be done to constrain these cases in the grammar. General
note on passobjs with verbs taking clausal objects (ASSERTION, THATS, PNTHATS, SVO, C1SHOULD,
SNWH, NSNWH, NTHATS): in Sager, passives with it subject (It was reported that the disk failed)
are not treated as having a clausal passobj. Rather, the clause goes into rv at the string level.
However, it seems to me that these verbs should all be subcategorized for clausal passobj.

2.13 PNTHATS

This is a PN followed by THATS, as in The fe reported to the factory that the sac had failed:

OPS: past
VERB: report
SUBJ: the field“engineer (sing)

8
)
|
—-'——*J

A

-

PP: to
the factory (sing)
0BJ: OPS: past,pert
VERB: fail
SUBJ: the sac (sing)

These objects are further subcategorized for pvals, like all PN-containing objects. Not every VERB
+ PP + CLAUSE structure involves a PNTHATS; for example, this proves with some certainty that
the world is round should be analyzed as a THATS with preceding PN in sa, while this proved to
everyone that the theory was wrong should be treated as PNTHATS with PN in OBJECT.

The passobj counterparts are PN and PNTHATS, as in {t was revealed to us yesterday that the
company had gone bankrupt (PNTHATS as passobj), or That Smith was the culprit was announced
to the entire assembly (PN as passobj).

2.14 SVO

SVO is a tenselsss clause; it differs from C1SHOULD (see below) in that (1) svo never has the
complementizer that, (2) a pronoun subject of SVO is accusative. Example: She saw them replace
the pump:

oPS: past

VERB: saw

SUBJ: pro: she (sing)

OBJ: OPS: untensed
VERB: 1replace
SUBJ: pro: them (pl)
0BJ: the pump (sing)

Passivization is not acceptable out of svo, cf. * They were seen replace the pump.

2.15 C1SHOULD

This consists of the complementizer that followed by svo, as in He suggested that ii be replaced:

OPS: past
VERB: suggest
SUBJ: pro: he (sing)
0BJ: OPS: untensed
VERB: replace
S'"BJ: passive
OBJ: pro: it (sing)

Passobj counterparts: C1SHOULD, as in [t was suggested that we leave early; and probably NULLOBJ.
(My intuitions are unclear on NULLOBJ as passobj here.)

A pronoun subject of C1SHOULD is nominative. The current BNF rule for CI1SHOUI.D requires that,
but should be generalized to account for I suggest we leave.

2.16 PNTHATSVO

This consists of PN followed by c1sHOULD, as in [suggested to Bill that he write up his inves-
tigations. Pvals are elicited by the Lexical Entry Procedure. Passobj counterparts are PN and
PNTHATSVO.

2.17 SNWH

Not currently implemented. This is an indirect question, an embedded clause beginning with a
wh-word. Example: I know who borrowed the car, She wondered whether it would snow. Passobj
counterparts are SNWH and NULLOBJ, as in It was finally revealed who stole the car, or What he
was really up to that day was revealed monihs later at the investigation.

2.18 NSNWH

Not currently implemented. This is an NP object followed by indirect question, as in He asked us
whether it would snow. Passobj counterparts: SNWH, NULLOBJ.

2.19 NTHATS

This is an NP followed by a THATS, as in She told the factory that the sac was inoperative:

OPS: past
VERB: tell
SUBJ: pro: she (sing)
D_OBJ: the factory (sing)
0BJ: OPS: past
VERB: be
SUBJ: the sac (sing)
ADJ: inoperative

Note that the NP object is marked as a dative object (semlabel d_obj, formerly inner_obj). This
is because of the parallelism with dative constructions like He fold the factory the truth.

Passobj counterpart: THATS. The semlabelling of this construction in passive is currently being
refined in order to distinguish between cases like He was told that the pump was inoperative, where
the subject should be marked as d_obj; and It was said that the pump was defective, where expletive
it should not be represented in the argument structure at all.

2.20 SVEN

This is a predicative small clause, as in He had the sac repaired quickly:

10

oPS: past

VERB: have

SUBJ: pro: he (sing)

0BJ: OPS: untensed
VERB: zrepair
SUBJ: passive
OBJ: the sac (sing)
ADV: quickly

This sentence is ambiguous between SVEN and NSTGO analyses of the object: the NsTGO reading
can be paraphrased He had the sac which had been repaired quickly, while the SVEN reading can
be paraphrased He caused the sac to be repaired gquickly. In the latter case, no one need be in
possession of the sac. This difference is clearer still in She found the book missing. Clearly, book
is not itself an argument of find, since the book was not found; what was found (out) was the
proposition the book is missing. There’s a lot of variation here, though: sometimes the subject of
the small clause under find also seems to be an argument of the verb, especially in the passive (The
car was found parked on Elm Street). Other verbs are clearer: They reported the car stolen doesn’t
mean that they reported the car, nor does He had the stairs fired mean that he had the stairs.
Probably one should split hairs and use two different BNF nodes corresponding to the NTOVO vs.
0BJTOVO (exceptional case marking vs. object-controlled equi) distinction.

Passobj counterpart: VENPASS, as in The gear teeth were found stripped and corroded. SVEN doesn’t
always passivize, as above. (ISR rule is still under development for this passobj.)

2.21 NN

NN is the double object dative, as in The faclory found her a new pump or They told her the result:

OPS: past
VERB: tell
SUBJ: pro: they {(pl)
D_OBJ: pro: her (sing)
OBJ: the result (sing)

Note that the indirect object is semlabelled d_obj.

Passobj counterpart is NSTGO, as in She was told the result:
OPS: past

VERB: tell

SUBJ: passive

D_OBJ: pro: she (sing)
0BJ: the result (sing)

Note that NP + NP sequences need not be parsed as NN. [gave Ruth a good answer contains NN,
but I consider Ruth a good dancer is SOBJBE (below).

Many but not all NNs have counterparts with the to- cr for- dative; thus give books to Louise
alternates with give Louise books. However, in some cases only the prepositional form is found

11

]

(compare the meaning of I got my degree for my parents (not for myself) with that of I got my
parents my degree); in other cases, we find only NN, as in The book cost Mary five dollars. The
two constructions (NN and prepositional datives) have different semantic properties, so we do not
want to attempt to represent them identically in the 1sR.

2.22 SOBJBE

This is another small clause, consisting of subject followed by OBJBE (nstg, astg, or pn), as in [
consider him a genius ot They consider il inoperative:

OPS: present

VERB: consider

SUBJ: pro: they (pl)

0BJ: OPS: untensed
VERB: be
SUBJ: pro: it (sing)
ADJ: inoperative

Sager has further subcategorization for nstg or astg or pn (or dstg, not included here) via bvals in
the lexicon, since some verbs do not allow all 0BJBE options; c¢f. That made her angry, That made
her the reigning monarch, *That made her in g state of rage. PUNDIT’s Lexical Entry Procedure
does not currently elicit bvals.

The passobj counterpart is OBIBE, as in He is considered a genius by his associates or It is con-
sidered inoperativc:

QPS: present

VERB: consider

SUBJ: passive

0BJ: OPS: untensed

VERB: be

SUBJ: pro: it (sing)

ADJ: inoperative
2.23 NA

This is a sequence of NP followed by an adjective phrase, as in She painted the barn red or they
stripped the gears bare:

OPS: past

VERB: strip

SUBJ: pro: they (pl)
0BJ: the gear (pl)
RES_CL:0PS: untensed

VERB: be
SUBJ: the gear (pl)
ADJ: bare

12

|

|

The Na object type differs from SOBIBE in several respects. First, in NA the NP is an argument of
the verb; if one paints the barn red, one has definitely painted the barn, whereas to have found the
book missing is not to have found the book, and to believe the problem insoluble is not to believe
the problem. Furthermore, the predication relationship between the adjective phrase and the NP
is interpreted as a result in the case of NA. Finally, there is sometimes idiosyncratic selection
between verb and adjective in NA, but not in sOBIBE. Thus We sanded it smooth sounds fine, but
We sanded it ugly sounds odd, even if the ugliness is interpreted as resulting from the sanding.

The passobj counterpart is ASTG, as in The house was painted red or It was stripped bare:

OPS: past

VERB: strip

SUBJ: passive

0BJ: pro: it (sing)
RES_CL:0PS: untensed

VERB: be
SUBJ: pro: it (sing)
ADJ: Dbare

2.24 ASTG

Example: It went bad:

QPs: past

VERB: go

SUBJ: pro: it (sing)
ADJ: bad

Verbs with the ASTG object select for particular adjectives, as in He went mad (vs. the anomalous
He went sane); and do not subcategorize for other OBJBE options (*He went a madman). But it
seems semi-semantic: He turned blue/green/mean/sour/serious but *He turned old/happy. Thus
it might not be possible to subcategorize for specific lexical items.

No passive.

2.25 DSTG

This is also quite rare. Certain verbs subcategorize for specific adverbs (He means well vs. *He
means warmly, or She did beautifully vs. *She did quietly). No passive.

2.26 DP1

This is the simplest verb-particle combination, as in He showed off, We lined up (vs. * He showed
out, * We lined over), or Engine jacks over:

13

OPS: present

VERB: jack

SUBJ: engine (sing)
PTCL: over

No passive.

2.27 DP2

DP2 is a particle followed by an NP, as in He ran up the bill. In contrast, He ran up the hill in
its normal interpretation is NOT a DP2, but is rather a PN object. One test: only particles can
occur to the right of ihe noun: He ran the bill up vs. *He ran the hill up, to cite a classic example.
Another test: only a PN can be topicalized, since it’s a constituent: Up the HILL he ran vs. *Up
the BILL he ran. Another example: They blew up the ship:

OPS: past

VERB: blow

SUBJ: pro: they (pl)
PTCL: up

0BJ: the ship (sing)

Passobj counterpart is the particle, DP1, as in A huge bill was run up that evening or The ship was
blown up:

OPS: past

VERB: blow

SUBJ: passive

O0BJ: the ship (sing)
PTCL: up

2.28 DP3

DP3 is just the permuted version of DP2, where the particle follows the noun phrase. Same passobj
as DP2; order regularized in ISR. Since there are no transformations in PUNDIT, such alternations
as that between DP2 and DP3 must be handled lexically.

2.29 DP1PN

This is a particle followed by a PpP: She moved in on him, They found out about it, The factory
should have followed up on it:

OPS: past,shall,pertf
VERB: follow
SUBJ: the factory (sing)

PTCL: up
PP: on
pro: it (sing)

14

Passobj counterpart is DP1P, when it passivizes, as in The announcement was led up to by a series
of remarks about the company’s financial difficulties(?), or It should have been followed up on:

OPS: past,shall,perf
VERB: follow
SUBJ: passive

PP: on

pro: it (sing)
PTCL: wup
2.30 DP2PN

DP2PN is a DP2 (particle + NP) followed by a PN, as in He mized up the apples with the pears.

Passobj counterpart: DP1PN, as in The apples were mized up with the pears. (Not, for example,
*The pears were mized up the apples with.)

2.31 DP3PN

This is a DP3 (NP + particle) followed by a PN, as in miz the apples up with the pears. Passobj
counterpart is also DP1PN.

2.32 DPSN

DPSN is a particle followed by a clause, as in She found out where it was hidden, He pointed out that
it was noon already, They oflen make out to be villains, or She found out that it was inoperative:

OPS: past

VERB: {find

SUBJ: pro: she (sing)
0BJ: OPS: past

VERB: Dbe

SUBJ: pro: it (sing)

ADJ: inoperative
PTCL: out

Passobj counterparts are DPSN, as in It was pointed out frequently that the plan could not succeed.
and DP1 Where it was hidden was never really found out. Both sound a little marginal, but might
occur.

